索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]陈胜,邓享誉,马凯歌,等.干细胞与髓核细胞相互作用及其机制的研究进展[J].国际骨科学杂志,2017,06:376-379.
点击复制

干细胞与髓核细胞相互作用及其机制的研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2017年06期
页码:
376-379
栏目:
综述
出版日期:
2017-11-30

文章信息/Info

Title:
-
作者:
陈胜邓享誉马凯歌赵磊邵增务
430022 武汉, 华中科技大学同济医学院附属协和医院骨科
Author(s):
-
关键词:
干细胞 髓核细胞 椎间盘退行性变 生物学治疗 作用机制
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2017.06.010
文献标识码:
-
摘要:
近年来,以干细胞为核心的生物治疗技术成为修复椎间盘退行性变(IVDD)的主要手段,其主要通过干细胞与椎间盘内髓核细胞的相互作用修复IVDD。髓核细胞通过影响干细胞形态,促进干细胞向椎间盘迁移和募集,并促进其向髓核细胞分化。干细胞可以增强髓核细胞的合成代谢,减少分解代谢,抑制炎性反应,并能促进髓核细胞增殖,减少细胞凋亡。干细胞与髓核细胞相互作用的机制主要为直接接触和旁分泌。该文对干细胞与髓核细胞相互作用及其机制的研究进展作一综述。
Abstract:
-

参考文献/References

[1] Tong W, Lu Z, Qin L, et al. Cell therapy for the degenerating intervertebral disc[J]. Transl Res, 2017, 181:49-58.
[2] Sakai D, Andersson GB. Stem cell therapy for intervertebral disc regeneration: obstacles and solutions[J]. Nat Rev Rheumatol, 2015, 11(4):243-256.
[3] Wang F, Shi R, Cai F, et al. Stem cell approaches to intervertebral disc regeneration: obstacles from the disc microenvironment[J]. Stem Cells Dev, 2015, 24(21):2479-2495.
[4] Wang H, Zhou Y, Chu TW, et al. Distinguishing characteristics of stem cells derived from different anatomical regions of human degenerated intervertebral discs[J]. Eur Spine J, 2016, 25(9):2691-2704.
[5] 武海军,银和平,胡继平,等. 非接触共培养条件下骨髓间充质干细胞向类髓核细胞的诱导分化[J]. 中国组织工程研究, 2016, 20(45):6706-6713.
[6] Choi H, Johnson ZI, Risbud MV. Understanding nucleus pulposus cell phenotype: a prerequisite for stem cell based therapies to treat intervertebral disc degeneration[J]. Curr Stem Cell Res Ther, 2015, 10(4):307-316.
[7] Allon AA, Butcher K, Schneider RA, et al. Structured coculture of mesenchymal stem cells and disc cells enhances differentiation and proliferation[J]. Cells Tissues Organs, 2012, 196(2):99-106.
[8] Dai J, Wang H, Liu G, et al. Dynamic compression and co-culture with nucleus pulposus cells promotes proliferation and differentiation of adipose-derived mesenchymal stem cells[J]. J Biomech, 2014, 47(5):966-972.
[9] 孟祥超,王君,张兴凯. 低氧诱导因子-1α与椎间盘退变[J]. 国际骨科学杂志, 2015, 36(4):264-268.
[10] Han XB, Zhang YL, Li HY, et al. Differentiation of human ligamentum flavum stem cells toward nucleus Pulposus-Like cells induced by coculture system and hypoxia[J]. Spine(Phila Pa 1976), 2015, 40(12):E665-E674.
[11] Thorpe AA, Binch AL, Creemers LB, et al. Nucleus pulposus phenotypic markers to determine stem cell differentiation:fact or fiction?[J]. Oncotarget, 2016, 7(3):2189-2200.
[12] Shi R, Wang F, Hong X, et al. The presence of stem cells in potential stem cell niches of the intervertebral disc region: an in vitro study on rats[J]. Eur Spine J, 2015, 24(11):2411-2424.
[13] Nitzsche F, Müller C, Lukomska B, et al. Concise review: MSC adhesion cascade-insights into homing and transendothelial migration[J]. Stem Cells, 2017, 35(6):1446-1460.
[14] Zhao Y, Zhang H. Update on the mechanisms of homing of adipose tissue-derived stem cells[J]. Cytotherapy, 2016, 18(7):816-827.
[15] Liu MH, Bian BS, Cui X, et al. Mesenchymal stem cells regulate mechanical properties of human degenerated nucleus pulposus cells through SDF-1/CXCR4/AKT axis[J]. Biochim Biophys Acta, 2016, 1863(8):1961-1968.
[16] Feng C, Zhang Y, Yang M, et al. Collagen-Derived N-Acetylated Proline-Glycine-Proline in intervertebral discs modulates CXCR1/2 expression and activation in cartilage endplate stem cells to induce migration and differentiation toward a pro-inflammatory phenotype[J]. Stem Cells, 2015, 33(12):3558-3568.
[17] Priyadarshani P, Li Y, Yao L. Advances in biological therapy for nucleus pulposus regeneration[J]. Osteoarthritis Cartilage, 2016, 24(2):206-212.
[18] Fontana G, See E, Pandit A. Current trends in biologics delivery to restore intervertebral disc anabolism[J]. Adv Drug Deliv Rev, 2015, 84:146-158.
[19] Ouyang A, Cerchiari AE, Tang X, et al. Effects of cell type and configuration on anabolic and catabolic activity in 3D co-culture of mesenchymal stem cells and nucleus pulposus cells[J]. J Orthop Res, 2017, 35(1):61-73.
[20] Cao C, Zou J, Liu X, et al. Bone marrow mesenchymal stem cells slow intervertebral disc degeneration through the NF-κB pathway[J]. Spine J, 2015, 15(3):530-538.
[21] Yang H, Cao C, Wu C, et al. TGF-βl suppresses inflammation in cell therapy for intervertebral disc degeneration[J]. Sci Rep, 2015, 5:13254.
[22] Liu J, Tao H, Wang H, et al. Biological behavior of human nucleus pulposus mesenchymal stem cells in response to changes in the acidic environment during intervertebral disc degeneration[J]. Stem Cells Dev, 2017, 26(12):901-911.
[23] Wang F, Cai F, Shi R, et al. Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration[J]. Osteoarthritis Cartilage, 2016, 24(3):398-408.
[24] Shen J, Xu S, Zhou H, et al. IL-1β induces apoptosis and autophagy via mitochondria pathway in human degenerative nucleus pulposus cells[J]. Sci Rep, 2017, 7:41067.
[25] Chen S, Lv X, Hu B, et al. RIPK1/RIPK3/MLKL-mediated necroptosis contributes to compression-induced rat nucleus pulposus cells death[J]. Apoptosis, 2017, 22(5):626-638.
[26] Song K, Gu T, Shuang F, et al. Adipose-derived stem cells improve the viability of nucleus pulposus cells in degenerated intervertebral discs[J]. Mol Med Rep, 2015, 12(3):4664-4668.
[27] Hu J, Deng G, Tian Y, et al. An in vitro investigation into the role of bone marrow-derived mesenchymal stem cells in the control of disc degeneration[J]. Mol Med Rep, 2015, 12(4):5701-5708.
[28] Sun Z, Luo B, Liu ZH, et al. Adipose-derived stromal cells protect intervertebral disc cells in compression: implications for stem cell regenerative disc therapy[J]. Int J Biol Sci, 2015, 11(2):133-143.
[29] Richardson SM, Walker RV, Parker S, et al. Intervertebral disc cell-mediated mesenchymal stem cell differentiation[J]. Stem Cells, 2006, 24(3):707-716.
[30] Willkomm L, Bloch W. State of the art in cell-cell fusion[J]. Methods Mol Biol, 2015, 1313:1-19.
[31] Niu CC, Yuan LJ, Lin SS, et al. Mesenchymal stem cell and nucleus pulposus cell coculture modulates cell profile[J]. Clin Orthop Relat Res, 2009, 467(12):3263-3272.
[32] Vadalà G, Studer RK, Sowa G, et al. Coculture of bone marrow mesenchymal stem cells and nucleus pulposus cells modulate gene expression profile without cell fusion[J]. Spine(Phila Pa 1976), 2008, 33(8):870-876.
[33] Villanelo F, Escalona Y, Pareja-Barrueto C, et al. Accessing gap-junction channel structure-function relationships through molecular modeling and simulations[J]. BMC Cell Biol, 2017, 18(Suppl 1):5.
[34] Strassburg S, Hodson NW, Hill PI, et al. Bi-directional exchange of membrane components occurs during co-culture of mesenchymal stem cells and nucleus pulposus cells[J]. PLoS One, 2012, 7(3):e33739.
[35] Lehmann TP, Filipiak K, Juzwa W, et al. Co-culture of human nucleus pulposus cells with multipotent mesenchymal stromal cells from human bone marrow reveals formation of tunnelling nanotubes[J]. Mol Med Rep, 2014, 9(2):574-582.
[36] Lu ZF, Zandieh Doulabi B, Wuisman PI, et al. Differentiation of adipose stem cells by nucleus pulposus cells: configuration effect[J]. Biochem Biophys Res Commun, 2007, 359(4):991-996.
[37] Stoyanov JV, Gantenbein-Ritter B, Bertolo A, et al. Role of hypoxia and growth and differentiation factor-5 on differentiation of human mesenchymal stem cells towards intervertebral nucleus pulposus-like cells[J]. Eur Cell Mater, 2011, 21:533-547.
[38] Feng C, Liu H, Yang Y, et al. Growth and differentiation factor-5 contributes to the structural and functional maintenance of the intervertebral disc[J]. Cell Physiol Biochem, 2015, 35(1):1-16.
[39] Xu J, E XQ, Wang NX, et al. BMP7 enhances the effect of BMSCs on extracellular matrix remodeling in a rabbit model of intervertebral disc degeneration[J]. FEBS J, 2016, 283(9):1689-1700.
[40] Cai F, Zhu L, Wang F, et al. The paracrine effect of degenerated disc cells on healthy human nucleus pulposus cells is mediated by MAPK and NF-κB pathways and can be reduced by TGF-β1[J]. DNA Cell Biol, 2017, 36(2):143-158.

备注/Memo

备注/Memo:
基金项目: 国家重点研发计划重点专项(2016YFC1100100)、国家自然科学基金重大研究计划(91649204)
通信作者: 邵增务 E-mail: SZWpro@163.com
更新日期/Last Update: 2017-11-30