索引超出了数组界限。
[1] Kersten RF, Van Gaalen SM, De Gast A, et al. Polyetheretherketone(PEEK)cages in cervical applications: a systematic review[J]. Spine J, 2015, 15(6):1446-1460.
[2] 潘剑成,龚旭,罗飞. 同种异体骨椎间融合器的研究进展及临床应用现状[J]. 中国修复重建外科杂志, 2015, 29(3):381-385.
[3] 孙驰,王洪立,姜建元,等. 基于CT测量的腰椎间融合器长度选择分析[J]. 中国脊柱脊髓杂志, 2016, 26(7):627-634.
[4] Cho W, Wu C, Mehbod AA, et al. Comparison of cage designs for transforaminal lumbar interbody fusion: a biomechanical study[J]. Clin Biomech(Bristol, Avon), 2008, 23(8):979-985.
[5] Tsitsopoulos P, Serhan H, Voronov I, et al. Would an anatomically shaped lumbar interbody cage provide better stability An in vitro cadaveric biomechanical evaluation[J]. J Spinal Disord Tech, 2012, 25(8):E240-E244.
[6] Vadapalli S, Robon M, Biyani A, et al. Effect of lumbar interbody cage geometry on construct stability: a cadaveric study[J]. Spine(Phila Pa 1976), 2006, 31(19):2189-2194.
[7] Hong TH, Cho KJ, Kim YT, et al. Does lordotic angle of cage determine lumbar lordosis in lumbar interbody fusion?[J]. Spine(Phila Pa 1976), 2017, 42(13):E775-E780.
[8] Kornblum MB, Turner AW, Cornwall GB, et al. Biomechanical evaluation of stand-alone lumbar polyether-ether-ketone interbody cage with integrated screws[J]. Spine J, 2013, 13(1):77-84.
[9] Phan K, Hogan JA, Assem Y, et al. PEEK-Halo effect in interbody fusion[J]. J Clin Neurosci, 2016, 24:138-140.
[10] Mour M, Das D, Winkler T, et al. Advances in porous biomaterials for dental and orthopaedic applications[J]. Materials(Basel), 2010, 3(5):2947-2974.
[11] 卢祺,于滨生. 脊柱内植物的3D打印技术研究进展[J]. 中国修复重建外科杂志, 2016, 30(9):1160-1165.
[12] Serra T, Capelli C, Toumpaniari R, et al. Design and fabrication of 3D-printed anatomically shaped lumbar cage for intervertebral disc(IVD)degeneration treatment[J]. Biofabrication, 2016, 8(3):035001.
[13] Wauthle R, van der Stok J, Amin-Yavari S, et al. Additively manufactured porous tantalum implants[J]. Acta Biomater, 2015, 14:217-225.
[14] Ma R, Tang T. Current strategies to improve the bioactivity of PEEK[J]. Int J Mol Sci, 2014, 15(4):5426-5445.
[15] Mobbs RJ, Phan K, Assem Y, et al. Combination Ti/PEEK ALIF cage for anterior lumbar interbody fusion: early clinical and radiological results[J]. J Clin Neurosci, 2016, 34:94-99.
[16] Nemoto O, Asazuma T, Yato Y, et al. Comparison of fusion rates following transforaminal lumbar interbody fusion using polyetheretherketone cages or Titanium cages with transpedicular instrumentation[J]. Eur Spine J, 2014, 23(10):2150-2155.
[17] Olivares-Navarrete R, Gittens RA, Schneider JM, et al. Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on Titanium alloy substrates than on poly-ether-ether-ketone[J]. Spine J, 2012, 12(3):265-272.
[18] Spruit M, Falk RG, Beckmann L, et al. The in vitro stabilising effect of polyetheretherketone cages versus a Titanium cage of similar design for anterior lumbar interbody fusion[J]. Eur Spine J, 2005, 14(8):752-758.
[19] Chunguang Z, Yueming S, Chongqi T, et al. Evaluation of bioabsorbable multiamino acid copolymer/α-tri-calcium phosphate interbody fusion cages in a goat model[J]. Spine(Phila Pa 1976), 2011, 36(25):E1615-E1622.
[20] Smit TH, Müller R, Van Dijk M, et al. Changes in bone architecture during spinal fusion: three years follow-up and the role of cage stiffness[J]. Spine(Phila Pa 1976), 2003, 28(16):1802-1808.
[21] Daentzer D, Willbold E, Kalla K, et al. Bioabsorbable interbody magnesium-polymer cage: degradation kinetics, biomechanical stiffness, and histological findings from an ovine cervical spine fusion model[J]. Spine(Phila Pa 1976), 2014, 39(20):E1220-E1227.
[22] 孙文志,鲁世保,海涌,等. 成人下腰椎终板矢状面形态的CT测量[J]. 中华骨科杂志, 2015, 35(12):1222-1227.
[23] Kim CW, Doerr TM, Luna IY, et al. Minimally invasive transforaminal lumbar interbody fusion using expandable technology: a clinical and radiographic analysis of 50 patients[J]. World Neurosurg, 2016, 90:228-235.
[24] Stein IC, Than KD, Chen KS, et al. Failure of a polyether-ether-ketone expandable interbody cage following transforaminal lumbar interbody fusion[J]. Eur Spine J, 2015, 24(Suppl 4):S555-S559.
[25] Rao PJ, Pelletier MH, Walsh WR, et al. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration[J]. Orthop Surg, 2014, 6(2):81-89.
[26] Walsh WR, Bertollo N, Christou C, et al. Plasma-sprayed Titanium coating to polyetheretherketone improves the bone-implant interface[J]. Spine J, 2015, 15(5):1041-1049.
[27] Kienle A, Graf N, Wilke HJ. Does impaction of titanium-coated interbody fusion cages into the disc space cause wear debris or delamination?[J]. Spine J, 2016, 16(2):235-242.