索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]李朝春,廖振华,祝佳,等.腰椎间融合器结构与材料[J].国际骨科学杂志,2017,06:360-363.
点击复制

腰椎间融合器结构与材料(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2017年06期
页码:
360-363
栏目:
综述
出版日期:
2017-11-30

文章信息/Info

Title:
-
作者:
李朝春廖振华祝佳刘伟强
100084 北京, 清华大学机械工程系(李朝春、刘伟强); 518055, 清华大学深圳研究生院先进制造学部(李朝春); 518057, 深圳清华大学研究院生物医用材料及植入器械重点实验室(廖振华、祝佳、刘伟强)
Author(s):
-
关键词:
腰椎间融合器 结构设计 钛合金 聚醚醚酮
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2017.06.006
文献标识码:
-
摘要:
结构设计和材料设计是腰椎间融合器的2个重要方面。结构设计可细分为足印面设计、矢状面轮廓设计和固定设计。足印面设计决定腰椎间融合器与上下椎体终板的接触面积,直接影响融合效果; 矢状面轮廓设计影响腰椎间融合器的沉降率、稳定性及手术节段前凸曲率恢复度; 固定设计能使腰椎间融合器在置入椎间隙后获得即刻稳定性和长期稳定性。钛合金、钽、聚醚醚酮(PEEK)和可吸收材料是应用于腰椎间融合器的主要材料。钛合金和钽逐步向3D打印方向发展; PEEK目前在临床上应用最为广泛; 可吸收材料作为理想材料有待进一步研究。腰椎间融合器在面向种群设计、无损操作的结构开发、优化性能的表面活性涂层研究方面仍有较大提升发展空间。该文就腰椎间融合器的结构设计、材料设计以及未来发展趋势作一综述。
Abstract:
-

参考文献/References

[1] Kersten RF, Van Gaalen SM, De Gast A, et al. Polyetheretherketone(PEEK)cages in cervical applications: a systematic review[J]. Spine J, 2015, 15(6):1446-1460.
[2] 潘剑成,龚旭,罗飞. 同种异体骨椎间融合器的研究进展及临床应用现状[J]. 中国修复重建外科杂志, 2015, 29(3):381-385.
[3] 孙驰,王洪立,姜建元,等. 基于CT测量的腰椎间融合器长度选择分析[J]. 中国脊柱脊髓杂志, 2016, 26(7):627-634.
[4] Cho W, Wu C, Mehbod AA, et al. Comparison of cage designs for transforaminal lumbar interbody fusion: a biomechanical study[J]. Clin Biomech(Bristol, Avon), 2008, 23(8):979-985.
[5] Tsitsopoulos P, Serhan H, Voronov I, et al. Would an anatomically shaped lumbar interbody cage provide better stability An in vitro cadaveric biomechanical evaluation[J]. J Spinal Disord Tech, 2012, 25(8):E240-E244.
[6] Vadapalli S, Robon M, Biyani A, et al. Effect of lumbar interbody cage geometry on construct stability: a cadaveric study[J]. Spine(Phila Pa 1976), 2006, 31(19):2189-2194.
[7] Hong TH, Cho KJ, Kim YT, et al. Does lordotic angle of cage determine lumbar lordosis in lumbar interbody fusion?[J]. Spine(Phila Pa 1976), 2017, 42(13):E775-E780.
[8] Kornblum MB, Turner AW, Cornwall GB, et al. Biomechanical evaluation of stand-alone lumbar polyether-ether-ketone interbody cage with integrated screws[J]. Spine J, 2013, 13(1):77-84.
[9] Phan K, Hogan JA, Assem Y, et al. PEEK-Halo effect in interbody fusion[J]. J Clin Neurosci, 2016, 24:138-140.
[10] Mour M, Das D, Winkler T, et al. Advances in porous biomaterials for dental and orthopaedic applications[J]. Materials(Basel), 2010, 3(5):2947-2974.
[11] 卢祺,于滨生. 脊柱内植物的3D打印技术研究进展[J]. 中国修复重建外科杂志, 2016, 30(9):1160-1165.
[12] Serra T, Capelli C, Toumpaniari R, et al. Design and fabrication of 3D-printed anatomically shaped lumbar cage for intervertebral disc(IVD)degeneration treatment[J]. Biofabrication, 2016, 8(3):035001.
[13] Wauthle R, van der Stok J, Amin-Yavari S, et al. Additively manufactured porous tantalum implants[J]. Acta Biomater, 2015, 14:217-225.
[14] Ma R, Tang T. Current strategies to improve the bioactivity of PEEK[J]. Int J Mol Sci, 2014, 15(4):5426-5445.
[15] Mobbs RJ, Phan K, Assem Y, et al. Combination Ti/PEEK ALIF cage for anterior lumbar interbody fusion: early clinical and radiological results[J]. J Clin Neurosci, 2016, 34:94-99.
[16] Nemoto O, Asazuma T, Yato Y, et al. Comparison of fusion rates following transforaminal lumbar interbody fusion using polyetheretherketone cages or Titanium cages with transpedicular instrumentation[J]. Eur Spine J, 2014, 23(10):2150-2155.
[17] Olivares-Navarrete R, Gittens RA, Schneider JM, et al. Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on Titanium alloy substrates than on poly-ether-ether-ketone[J]. Spine J, 2012, 12(3):265-272.
[18] Spruit M, Falk RG, Beckmann L, et al. The in vitro stabilising effect of polyetheretherketone cages versus a Titanium cage of similar design for anterior lumbar interbody fusion[J]. Eur Spine J, 2005, 14(8):752-758.
[19] Chunguang Z, Yueming S, Chongqi T, et al. Evaluation of bioabsorbable multiamino acid copolymer/α-tri-calcium phosphate interbody fusion cages in a goat model[J]. Spine(Phila Pa 1976), 2011, 36(25):E1615-E1622.
[20] Smit TH, Müller R, Van Dijk M, et al. Changes in bone architecture during spinal fusion: three years follow-up and the role of cage stiffness[J]. Spine(Phila Pa 1976), 2003, 28(16):1802-1808.
[21] Daentzer D, Willbold E, Kalla K, et al. Bioabsorbable interbody magnesium-polymer cage: degradation kinetics, biomechanical stiffness, and histological findings from an ovine cervical spine fusion model[J]. Spine(Phila Pa 1976), 2014, 39(20):E1220-E1227.
[22] 孙文志,鲁世保,海涌,等. 成人下腰椎终板矢状面形态的CT测量[J]. 中华骨科杂志, 2015, 35(12):1222-1227.
[23] Kim CW, Doerr TM, Luna IY, et al. Minimally invasive transforaminal lumbar interbody fusion using expandable technology: a clinical and radiographic analysis of 50 patients[J]. World Neurosurg, 2016, 90:228-235.
[24] Stein IC, Than KD, Chen KS, et al. Failure of a polyether-ether-ketone expandable interbody cage following transforaminal lumbar interbody fusion[J]. Eur Spine J, 2015, 24(Suppl 4):S555-S559.
[25] Rao PJ, Pelletier MH, Walsh WR, et al. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration[J]. Orthop Surg, 2014, 6(2):81-89.
[26] Walsh WR, Bertollo N, Christou C, et al. Plasma-sprayed Titanium coating to polyetheretherketone improves the bone-implant interface[J]. Spine J, 2015, 15(5):1041-1049.
[27] Kienle A, Graf N, Wilke HJ. Does impaction of titanium-coated interbody fusion cages into the disc space cause wear debris or delamination?[J]. Spine J, 2016, 16(2):235-242.

备注/Memo

备注/Memo:
基金项目: 十三五国家重点研发计划(2016YFC1102002)、深圳市基础研究项目(JCYJ20151030160526024)、深圳市技术服务平台项目(SMJKPT20140417010001)
通信作者: 刘伟强 E-mail: weiqliu@hotmail.com
更新日期/Last Update: 2017-11-30