索引超出了数组界限。
[1] Bonafe L, Cormier-Daire V, Hall C, et al. Nosology and classification of genetic skeletal disorders: 2015 revision[J]. Am J Med Genet A, 2015, 167A(12):2869-2892.
[2] Borochowitz Z, Lachman R, Adomian GE, et al. Achondrogenesis type I: delineation of further heterogeneity and identification of two distinct subgroups[J]. J Pediatr, 1988, 112(1):23-31.
[3] Smits P, Bolton AD, Funari V, et al. Lethal skeletal dysplasia in mice and humans lacking the golgin GMAP-210[J]. N Engl J Med, 2010, 362(3):206-216.
[4] Sato K, Roboti P, Mironov AA, et al. Coupling of vesicle tethering and rab binding is required for in vivo functionality of the golgin GMAP-210[J]. Mol Biol Cell, 2015, 26(3):537-553.
[5] Roboti P, Sato K, Lowe M. The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway[J]. J Cell Sci, 2015, 128(8):1595-1606.
[6] Varkey JJ, Jones RA. Perinatally lethal, short-limbed dwarfism with distinct features:schneckenbecken dysplasia[J]. Ultrasound Obstet Gynecol, 2004, 24(5):575-577.
[7] Hiraoka S, Furuichi T, Nishimura G, et al. Nucleotide-sugar transporter SLC35D1 is critical to chondroitin sulfate synthesis in cartilage and skeletal development in mouse and human[J]. Nat Med, 2007, 13(11):1363-1367.
[8] Furuichi T, Kayserili H, Hiraoka S, et al. Identification of loss-of-function mutations of SLC35D1 in patients with Schneckenbecken dysplasia, but not with other severe spondylodysplastic dysplasias group diseases[J]. J Med Genet, 2009, 46(8):562-568.
[9] Lee H, Nevarez L, Lachman RS, et al. A second locus for Schneckenbecken dysplasia identified by a mutation in the gene encoding inositol polyphosphate phosphatase-like 1(INPPL1)[J]. Am J Med Genet A, 2015, 167A(10):2470-2473.
[10] Sedaghatian MR.Congenital lethal metaphyseal chondrodysplasia:a newly recognized complex autosomal recessive disorder[J]. Am J Med Genet, 1980, 6(4):269-274.
[11] Aygun C, Celik FC, Nural MS, et al. Simplified gyral pattern with cerebellar hypoplasia in Sedaghatian type spondylometaphyseal dysplasia: a clinical report and review of the literature[J]. Am J Med Genet A, 2012, 158A(6):1400-1405.
[12] KoutoubyA, Habibullah J, Moinuddin FA. Spondylometaphyseal dysplasia: Sedaghatian type[J]. Am J Med Genet, 2000, 90(3):199-202.
[13] Smith AC, Mears AJ, Bunker R, et al. Mutations in the enzyme glutathione peroxidase 4 cause Sedaghatian-type spondylometaphyseal dysplasia[J]. J Med Genet, 2014, 51(7):470-474.
[14] Sakai O, Yasuzawa T, Sumikawa Y, et al. Role of GPx4 in human vascular endothelial cells, and the compensatory activity of brown rice on GPx4 ablation condition[J]. Pathophysiology, 2017, 24(1):9-15.
[15] Sakai O, Uchida T, Imai H, et al. Glutathione peroxidase 4 plays an important role in oxidative homeostasis and wound repair in corneal epithelial cells[J]. FEBS Open Bio, 2016, 6(12):1238-1247.
[16] Rong X, Zhou Y, Liu Y, et al. Glutathione peroxidase 4 inhibits Wnt/β-catenin signaling and regulates dorsal organizer formation in zebrafish embryos[J]. Development, 2017, 144(9):1687-1697.
[17] Cormier-Daire V, Delezoide AL, Philip N, et al. Clinical, radiological, and chondro-osseous findings in opsismodysplasia: survey of a series of 12 unreported cases[J]. J Med Genet, 2003, 40(3):195-200.
[18] Li B, Krakow D, Nickerson DA, et al. Opsismodysplasia resulting from an insertion mutation in the SH2 domain, which destabilizes INPPL1[J]. Am J Med Genet A, 2014, 164A(9):2407-2411.
[19] Huber C, Faqeih EA, Bartholdi D, et al. Exome sequencing identifies INPPL1 mutations as a cause of opsismodysplasia[J]. Am J Hum Genet, 2013, 92(1):144-149.
[20] Below JE, Earl DL, Shively KM, et al. Whole-genome analysis reveals that mutations in inositol polyphosphate phosphatase-like 1 cause opsismodysplasia[J]. Am J Hum Genet, 2013, 92(1):137-143.
[21] Dubois E, Jacoby M, Blockmans M, et al. Developmental defects and rescue from glucose intolerance of a catalytically-inactive novel Ship2 mutant mouse[J]. Cell Signal, 2012, 24(11):1971-1980.
[22] Mégarbané A, Dagher R, Melki I. Sib pair with previously unreported skeletal dysplasia[J]. Am J Med Genet A, 2008, 146A(22):2916-2919.
[23] Mégarbané A, Mehawej C, El Zahr A, et al. A second family with autosomal recessive spondylometaphyseal dysplasia and early death[J]. Am J Med Genet A, 2014, 164A(4):1010-1014.
[24] Mehawej C, Delahodde A, Legeai-Mallet L, et al. The impairment of MAGMAS function in human is responsible for a severe skeletal dysplasia[J]. PLoS Genet, 2014, 10(5):e1004311.
[25] Tagliati F, Gagliano T, Gentilin E, et al. Magmas overexpression inhibits staurosporine induced apoptosis in rat pituitary adenoma cell lines[J]. PLoS One, 2013, 8(9):e75194.
[26] Srivastava S, Sinha D, Saha PP, et al. Magmas functions as a ROS regulator and provides cytoprotection against oxidative stress-mediated damages[J]. Cell Death Dis, 2014, 5:e1394.