索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]李国强,王剑.严重脊柱发育不良疾病遗传学研究进展[J].国际骨科学杂志,2017,05:323-326.
点击复制

严重脊柱发育不良疾病遗传学研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2017年05期
页码:
323-326
栏目:
综述
出版日期:
2017-09-20

文章信息/Info

Title:
-
作者:
李国强王剑
200127, 上海交通大学医学院附属上海儿童医学中心分子诊断实验室与医学遗传科
Author(s):
-
关键词:
严重脊柱发育不良 遗传学 致病基因 罕见病
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2017.05.012
文献标识码:
A
摘要:
遗传性骨病种类繁多,其中严重脊柱发育不良是以严重脊椎异常和独特骨骼形态为特征的异质性骨骼疾病,通常可导致患儿早亡。该疾病组包括软骨成长不全ⅠA型(ACG1A)、蜗牛形骨盆骨骼发育不良、脊椎干骺端发育不良Sedaghatian型(SMDS)、骨成熟延迟的骨骼发育不良、线粒体相关的粒细胞-巨噬细胞集落刺激因子信号分子(MAGMAS)相关的骨骼发育不良。遗传学检测手段对于确诊及预防此类疾病的发生具有重要作用,随着高通量测序技术的应用,相关致病基因不断被揭示,为阐明发病机制及帮助诊断和预防打下基础。该文对严重脊柱发育不良疾病遗传学研究进展作一综述。
Abstract:
-

参考文献/References

[1] Bonafe L, Cormier-Daire V, Hall C, et al. Nosology and classification of genetic skeletal disorders: 2015 revision[J]. Am J Med Genet A, 2015, 167A(12):2869-2892.
[2] Borochowitz Z, Lachman R, Adomian GE, et al. Achondrogenesis type I: delineation of further heterogeneity and identification of two distinct subgroups[J]. J Pediatr, 1988, 112(1):23-31.
[3] Smits P, Bolton AD, Funari V, et al. Lethal skeletal dysplasia in mice and humans lacking the golgin GMAP-210[J]. N Engl J Med, 2010, 362(3):206-216.
[4] Sato K, Roboti P, Mironov AA, et al. Coupling of vesicle tethering and rab binding is required for in vivo functionality of the golgin GMAP-210[J]. Mol Biol Cell, 2015, 26(3):537-553.
[5] Roboti P, Sato K, Lowe M. The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway[J]. J Cell Sci, 2015, 128(8):1595-1606.
[6] Varkey JJ, Jones RA. Perinatally lethal, short-limbed dwarfism with distinct features:schneckenbecken dysplasia[J]. Ultrasound Obstet Gynecol, 2004, 24(5):575-577.
[7] Hiraoka S, Furuichi T, Nishimura G, et al. Nucleotide-sugar transporter SLC35D1 is critical to chondroitin sulfate synthesis in cartilage and skeletal development in mouse and human[J]. Nat Med, 2007, 13(11):1363-1367.
[8] Furuichi T, Kayserili H, Hiraoka S, et al. Identification of loss-of-function mutations of SLC35D1 in patients with Schneckenbecken dysplasia, but not with other severe spondylodysplastic dysplasias group diseases[J]. J Med Genet, 2009, 46(8):562-568.
[9] Lee H, Nevarez L, Lachman RS, et al. A second locus for Schneckenbecken dysplasia identified by a mutation in the gene encoding inositol polyphosphate phosphatase-like 1(INPPL1)[J]. Am J Med Genet A, 2015, 167A(10):2470-2473.
[10] Sedaghatian MR.Congenital lethal metaphyseal chondrodysplasia:a newly recognized complex autosomal recessive disorder[J]. Am J Med Genet, 1980, 6(4):269-274.
[11] Aygun C, Celik FC, Nural MS, et al. Simplified gyral pattern with cerebellar hypoplasia in Sedaghatian type spondylometaphyseal dysplasia: a clinical report and review of the literature[J]. Am J Med Genet A, 2012, 158A(6):1400-1405.
[12] KoutoubyA, Habibullah J, Moinuddin FA. Spondylometaphyseal dysplasia: Sedaghatian type[J]. Am J Med Genet, 2000, 90(3):199-202.
[13] Smith AC, Mears AJ, Bunker R, et al. Mutations in the enzyme glutathione peroxidase 4 cause Sedaghatian-type spondylometaphyseal dysplasia[J]. J Med Genet, 2014, 51(7):470-474.
[14] Sakai O, Yasuzawa T, Sumikawa Y, et al. Role of GPx4 in human vascular endothelial cells, and the compensatory activity of brown rice on GPx4 ablation condition[J]. Pathophysiology, 2017, 24(1):9-15.
[15] Sakai O, Uchida T, Imai H, et al. Glutathione peroxidase 4 plays an important role in oxidative homeostasis and wound repair in corneal epithelial cells[J]. FEBS Open Bio, 2016, 6(12):1238-1247.
[16] Rong X, Zhou Y, Liu Y, et al. Glutathione peroxidase 4 inhibits Wnt/β-catenin signaling and regulates dorsal organizer formation in zebrafish embryos[J]. Development, 2017, 144(9):1687-1697.
[17] Cormier-Daire V, Delezoide AL, Philip N, et al. Clinical, radiological, and chondro-osseous findings in opsismodysplasia: survey of a series of 12 unreported cases[J]. J Med Genet, 2003, 40(3):195-200.
[18] Li B, Krakow D, Nickerson DA, et al. Opsismodysplasia resulting from an insertion mutation in the SH2 domain, which destabilizes INPPL1[J]. Am J Med Genet A, 2014, 164A(9):2407-2411.
[19] Huber C, Faqeih EA, Bartholdi D, et al. Exome sequencing identifies INPPL1 mutations as a cause of opsismodysplasia[J]. Am J Hum Genet, 2013, 92(1):144-149.
[20] Below JE, Earl DL, Shively KM, et al. Whole-genome analysis reveals that mutations in inositol polyphosphate phosphatase-like 1 cause opsismodysplasia[J]. Am J Hum Genet, 2013, 92(1):137-143.
[21] Dubois E, Jacoby M, Blockmans M, et al. Developmental defects and rescue from glucose intolerance of a catalytically-inactive novel Ship2 mutant mouse[J]. Cell Signal, 2012, 24(11):1971-1980.
[22] Mégarbané A, Dagher R, Melki I. Sib pair with previously unreported skeletal dysplasia[J]. Am J Med Genet A, 2008, 146A(22):2916-2919.
[23] Mégarbané A, Mehawej C, El Zahr A, et al. A second family with autosomal recessive spondylometaphyseal dysplasia and early death[J]. Am J Med Genet A, 2014, 164A(4):1010-1014.
[24] Mehawej C, Delahodde A, Legeai-Mallet L, et al. The impairment of MAGMAS function in human is responsible for a severe skeletal dysplasia[J]. PLoS Genet, 2014, 10(5):e1004311.
[25] Tagliati F, Gagliano T, Gentilin E, et al. Magmas overexpression inhibits staurosporine induced apoptosis in rat pituitary adenoma cell lines[J]. PLoS One, 2013, 8(9):e75194.
[26] Srivastava S, Sinha D, Saha PP, et al. Magmas functions as a ROS regulator and provides cytoprotection against oxidative stress-mediated damages[J]. Cell Death Dis, 2014, 5:e1394.

备注/Memo

备注/Memo:
通信作者: 王剑 E-mail: Labwangjian@shsmu.edu.cn
更新日期/Last Update: 2017-09-20