索引超出了数组界限。
[1] Cao Y, Liao S, Zeng H, et al. 3D characterization of morphological changes in the intervertebral disc and endplate during aging: a propagation phase contrast synchrotron micro-tomography study[J]. Sci Rep, 2017, 7:43094.
[2] Yaman ME, Kazanci A, Yaman ND, et al. Factors that influence recurrent lumbar disc herniation[J]. Hong Kong Med J, 2017, 23(3):258-263.
[3] Zhou X, Chen L, Grad S, et al. The roles and perspectives of microRNAs as biomarkers for intervertebral disc degeneration[J]. J Tissue Eng Regen Med, 2017, [Epub ahead of print].
[4] Gooyers CE, Callaghan JP. Peak stress in the annulus fibrosus under cyclic biaxial tensile loading[J]. J Biomech Eng, 2016, 138(5):051006.
[5] Li XD, Kong Q. Repair and regenerative therapies of the annulus fibrosus of the intervertebral disc[J]. J Coll Physicians Surg Pak, 2016, 26(2):138-144.
[6] Li X, Kong Q. Development and challenges of annulus fibrosus tissue engineering[J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2015, 29(4):498-502.
[7] Zhang SJ, Yang W, Wang C, et al. Autophagy: a double-edged sword in intervertebral disk degeneration[J]. Clin Chim Acta, 2016, 457:27-35.
[8] Iu J, Santerre JP, Kandel RA. Inner and outer annulus fibrosus cells exhibit differentiated phenotypes and yield changes in extracellular matrix protein composition in vitro on a polycarbonate urethane scaffold[J]. Tissue Eng Part A, 2014, 20(23/24):3261-3269.
[9] Wang S, Rui Y, Lu J, et al. Cell and molecular biology of intervertebral disc degeneration: current understanding and implications for potential therapeutic strategies[J]. Cell Prolif, 2014, 47(5):381-390.
[10] Liu H, Pan H, Yang H, et al. LIM mineralization protein-1 suppresses TNF-α induced intervertebral disc degeneration by maintaining nucleus pulposus extracellular matrix production and inhibiting matrix metalloproteinases expression[J]. J Orthop Res, 2015, 33(3):294-303.
[11] Chou PH, Wang ST, Yen MH, et al. Fluid-induced, shear stress-regulated extracellular matrix and matrix metalloproteinase genes expression on human annulus fibrosus cells[J]. Stem Cell Res Ther, 2016, 7:34.
[12] Wu Y, Cisewski S, Sachs BL, et al. Effect of cartilage endplate on cell based disc regeneration: a finite element analysis[J]. Mol Cell Biomech, 2013, 10(2):159-182.
[13] Shirazi-Adl A, Taheri M, Urban JG. Analysis of cell viability in intervertebral disc:effect of endplate permeability on cell population[J]. J Biomech, 2010, 43(7):1330-1336.
[14] Merceron C, Mangiavini L, Robling A, et al. Loss of HIF-1α in the notochord results in cell death and complete disappearance of the nucleus pulposus[J]. PLoS One, 2014, 9(10):e110768.
[15] Li XF, Xue CC, Zhao YJ, et al. Deletion of OPG leads to increased neovascularization and expression of inflammatory cytokines in the lumbar intervertebral disc of mice[J]. Spine(Phila Pa 1976), 2017, 42(1):E8-E14.
[16] Wang Z, Qu Z, Fu C, et al. Interleukin 1 polymorphisms contribute to intervertebral disc degeneration risk: a meta-analysis[J]. PLoS One, 2016, 11(6):e0156412.
[17] Wang J, Chen H, Cao P, et al. Inflammatory cytokines induce caveolin-1/β-catenin signalling in rat nucleus pulposus cell apoptosis through the p38 MAPK pathway[J]. Cell Prolif, 2016, 49(3):362-372.
[18] Xu F, Gao F, Liu Y, et al. Bioinformatics analysis of molecular mechanisms involved in intervertebral disc degeneration induced by TNF-α and IL-1β[J]. Mol Med Rep, 2016, 13(3):2925-2931.
[19] Wang C, Yu X, Yan Y, et al. Tumor necrosis factor-α: a key contributor to intervertebral disc degeneration[J]. Acta Biochim Biophys Sin(Shanghai), 2017, 49(1):1-13.
[20] Chen B, Liu Y, Zhang Y, et al. IL-21 is positively associated with intervertebral disc degeneration by interaction with TNF-α through the JAK-STAT signaling pathway[J]. Inflammation, 2017, 40(2):612-622.
[21] Zhang Y, Zhao Y, Li J, et al. Interleukin-9 promotes TNF-α and PGE2 release in human degenerated intervertebral disc tissues[J]. Spine(Phila Pa 1976), 2016, 41(21):1631-1640.
[22] Hsieh AH, Twomey JD. Cellular mechanobiology of the intervertebral disc: new directions and approaches[J]. J Biomech, 2010, 43(1):137-145.
[23] Noriega DC, Ardura F, Hernández-Ramajo R, et al. Intervertebral disc repair by allogeneic mesenchymal bone marrow cells: a randomized controlled trial[J]. Transplantation, 2017, 101(8):1945-1951.
[24] Chun HJ, Kim YS, Kim BK, et al. Transplantation of human adipose-derived stem cells in a rabbit model of traumatic degeneration of lumbar discs[J]. World Neurosurg, 2012, 78(3/4):364-371.
[25] Korecki CL, Taboas JM, Tuan RS, et al. Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype[J]. Stem Cell Res Ther, 2010, 1(2):18.
[26] Niemansburg SL, van Delden JJ, Dhert WJ, et al. Regenerative medicine interventions for orthopedic disorders: ethical issues in the translation into patients[J]. Regen Med, 2013, 8(1):65-73.
[27] Wang Y, Zhu J, Zhang L, et al. Role of C/EBP homologous protein and endoplasmic reticulum stress in asthma exacerbation by regulating the IL-4/signal transducer and activator of transcription 6/transcription factor EC/IL-4 receptor a positive feedback loop in M2 macrophages[J]. J Allergy Clin Immunol, 2017, [Epub ahead of print].
[28] Zhang YH, Zhao CQ, Jiang LS, et al. Cyclic stretch-induced apoptosis in rat annulus fibrosus cells is mediated in part by endoplasmic reticulum stress through nitric oxide production[J]. Eur Spine J, 2011, 20(8):1233-1243.
[29] Bowles RD, Gebhard HH, Härtl R, et al. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine[J]. Proc Natl Acad Sci USA, 2011, 108(32):13106-13111.
[30] Zhou P, Guo Q, Ling F, et al. Progress and challenges in tissue engineering of intervertebral disc annulus fibrosus[J]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2016, 45(2):132-140.
[31] Nau C, Henrich D, Seebach C, et al. Tissue engineered vascularized periosteal flap enriched with MSC/EPCs for the treatment of large bone defects in rats[J]. Int J Mol Med, 2017, 39(4):907-917.
[32] van Uden S, Silva-Correia J, Correlo VM, et al. Custom-tailored tissue engineered polycaprolactone scaffolds for total disc replacement[J]. Biofabrication, 2015, 7(1):015008.
[33] Choy AT, Chan BP. A structurally and functionally biomimetic biphasic scaffold for intervertebral disc tissue engineering[J]. PLoS One, 2015, 10(6):e0131827.
[34] Li YF, Tang XZ, Liang CG, et al. Role of growth differentiation factor-5 and bone morphogenetic protein type II receptor in the development of lumbar intervertebral disc degeneration[J]. Int J Clin Exp Pathol, 2015, 8(1):719-726.
[35] Shasti M, Jacquet R, Mcclellan P, et al. Effects of FGF-2 and OP-1 in vitro on donor source cartilage for auricular Reconstruction tissue engineering[J]. Int J Pediatr Otorhinolaryngol, 2014, 78(3):416-422.