索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]傅向羽,邓国英,赵庆华.纤维环损伤致椎间盘退行性病变机制及生物学治疗研究进展[J].国际骨科学杂志,2017,05:319-322.
点击复制

纤维环损伤致椎间盘退行性病变机制及生物学治疗研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2017年05期
页码:
319-322
栏目:
综述
出版日期:
2017-09-20

文章信息/Info

Title:
-
作者:
傅向羽邓国英赵庆华
201620, 上海交通大学附属第一人民医院骨科
Author(s):
-
关键词:
纤维环损伤 椎间盘退行性病变 生物学治疗 组织工程
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2017.05.011
文献标识码:
A
摘要:
纤维环损伤与椎间盘退行性病变(IDD)的发生密切相关。纤维环损伤主要涉及机械负荷的影响、纤维环基质金属蛋白酶水解异常及纤维环营养供应障碍等方面。纤维环损伤后继发的炎症反应和生物力学性能改变使IDD发生和发展。修复纤维环、维持纤维环完整性在IDD预防和治疗中具有重要意义。细胞移植、基因治疗以及纤维环组织工程构建等生物学治疗方法有助于纤维环的修复。该文就纤维环损伤导致IDD机制及生物学治疗研究进展作一综述。
Abstract:
-

参考文献/References

[1] Cao Y, Liao S, Zeng H, et al. 3D characterization of morphological changes in the intervertebral disc and endplate during aging: a propagation phase contrast synchrotron micro-tomography study[J]. Sci Rep, 2017, 7:43094.
[2] Yaman ME, Kazanci A, Yaman ND, et al. Factors that influence recurrent lumbar disc herniation[J]. Hong Kong Med J, 2017, 23(3):258-263.
[3] Zhou X, Chen L, Grad S, et al. The roles and perspectives of microRNAs as biomarkers for intervertebral disc degeneration[J]. J Tissue Eng Regen Med, 2017, [Epub ahead of print].
[4] Gooyers CE, Callaghan JP. Peak stress in the annulus fibrosus under cyclic biaxial tensile loading[J]. J Biomech Eng, 2016, 138(5):051006.
[5] Li XD, Kong Q. Repair and regenerative therapies of the annulus fibrosus of the intervertebral disc[J]. J Coll Physicians Surg Pak, 2016, 26(2):138-144.
[6] Li X, Kong Q. Development and challenges of annulus fibrosus tissue engineering[J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2015, 29(4):498-502.
[7] Zhang SJ, Yang W, Wang C, et al. Autophagy: a double-edged sword in intervertebral disk degeneration[J]. Clin Chim Acta, 2016, 457:27-35.
[8] Iu J, Santerre JP, Kandel RA. Inner and outer annulus fibrosus cells exhibit differentiated phenotypes and yield changes in extracellular matrix protein composition in vitro on a polycarbonate urethane scaffold[J]. Tissue Eng Part A, 2014, 20(23/24):3261-3269.
[9] Wang S, Rui Y, Lu J, et al. Cell and molecular biology of intervertebral disc degeneration: current understanding and implications for potential therapeutic strategies[J]. Cell Prolif, 2014, 47(5):381-390.
[10] Liu H, Pan H, Yang H, et al. LIM mineralization protein-1 suppresses TNF-α induced intervertebral disc degeneration by maintaining nucleus pulposus extracellular matrix production and inhibiting matrix metalloproteinases expression[J]. J Orthop Res, 2015, 33(3):294-303.
[11] Chou PH, Wang ST, Yen MH, et al. Fluid-induced, shear stress-regulated extracellular matrix and matrix metalloproteinase genes expression on human annulus fibrosus cells[J]. Stem Cell Res Ther, 2016, 7:34.
[12] Wu Y, Cisewski S, Sachs BL, et al. Effect of cartilage endplate on cell based disc regeneration: a finite element analysis[J]. Mol Cell Biomech, 2013, 10(2):159-182.
[13] Shirazi-Adl A, Taheri M, Urban JG. Analysis of cell viability in intervertebral disc:effect of endplate permeability on cell population[J]. J Biomech, 2010, 43(7):1330-1336.
[14] Merceron C, Mangiavini L, Robling A, et al. Loss of HIF-1α in the notochord results in cell death and complete disappearance of the nucleus pulposus[J]. PLoS One, 2014, 9(10):e110768.
[15] Li XF, Xue CC, Zhao YJ, et al. Deletion of OPG leads to increased neovascularization and expression of inflammatory cytokines in the lumbar intervertebral disc of mice[J]. Spine(Phila Pa 1976), 2017, 42(1):E8-E14.
[16] Wang Z, Qu Z, Fu C, et al. Interleukin 1 polymorphisms contribute to intervertebral disc degeneration risk: a meta-analysis[J]. PLoS One, 2016, 11(6):e0156412.
[17] Wang J, Chen H, Cao P, et al. Inflammatory cytokines induce caveolin-1/β-catenin signalling in rat nucleus pulposus cell apoptosis through the p38 MAPK pathway[J]. Cell Prolif, 2016, 49(3):362-372.
[18] Xu F, Gao F, Liu Y, et al. Bioinformatics analysis of molecular mechanisms involved in intervertebral disc degeneration induced by TNF-α and IL-1β[J]. Mol Med Rep, 2016, 13(3):2925-2931.
[19] Wang C, Yu X, Yan Y, et al. Tumor necrosis factor-α: a key contributor to intervertebral disc degeneration[J]. Acta Biochim Biophys Sin(Shanghai), 2017, 49(1):1-13.
[20] Chen B, Liu Y, Zhang Y, et al. IL-21 is positively associated with intervertebral disc degeneration by interaction with TNF-α through the JAK-STAT signaling pathway[J]. Inflammation, 2017, 40(2):612-622.
[21] Zhang Y, Zhao Y, Li J, et al. Interleukin-9 promotes TNF-α and PGE2 release in human degenerated intervertebral disc tissues[J]. Spine(Phila Pa 1976), 2016, 41(21):1631-1640.
[22] Hsieh AH, Twomey JD. Cellular mechanobiology of the intervertebral disc: new directions and approaches[J]. J Biomech, 2010, 43(1):137-145.
[23] Noriega DC, Ardura F, Hernández-Ramajo R, et al. Intervertebral disc repair by allogeneic mesenchymal bone marrow cells: a randomized controlled trial[J]. Transplantation, 2017, 101(8):1945-1951.
[24] Chun HJ, Kim YS, Kim BK, et al. Transplantation of human adipose-derived stem cells in a rabbit model of traumatic degeneration of lumbar discs[J]. World Neurosurg, 2012, 78(3/4):364-371.
[25] Korecki CL, Taboas JM, Tuan RS, et al. Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype[J]. Stem Cell Res Ther, 2010, 1(2):18.
[26] Niemansburg SL, van Delden JJ, Dhert WJ, et al. Regenerative medicine interventions for orthopedic disorders: ethical issues in the translation into patients[J]. Regen Med, 2013, 8(1):65-73.
[27] Wang Y, Zhu J, Zhang L, et al. Role of C/EBP homologous protein and endoplasmic reticulum stress in asthma exacerbation by regulating the IL-4/signal transducer and activator of transcription 6/transcription factor EC/IL-4 receptor a positive feedback loop in M2 macrophages[J]. J Allergy Clin Immunol, 2017, [Epub ahead of print].
[28] Zhang YH, Zhao CQ, Jiang LS, et al. Cyclic stretch-induced apoptosis in rat annulus fibrosus cells is mediated in part by endoplasmic reticulum stress through nitric oxide production[J]. Eur Spine J, 2011, 20(8):1233-1243.
[29] Bowles RD, Gebhard HH, Härtl R, et al. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine[J]. Proc Natl Acad Sci USA, 2011, 108(32):13106-13111.
[30] Zhou P, Guo Q, Ling F, et al. Progress and challenges in tissue engineering of intervertebral disc annulus fibrosus[J]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2016, 45(2):132-140.
[31] Nau C, Henrich D, Seebach C, et al. Tissue engineered vascularized periosteal flap enriched with MSC/EPCs for the treatment of large bone defects in rats[J]. Int J Mol Med, 2017, 39(4):907-917.
[32] van Uden S, Silva-Correia J, Correlo VM, et al. Custom-tailored tissue engineered polycaprolactone scaffolds for total disc replacement[J]. Biofabrication, 2015, 7(1):015008.
[33] Choy AT, Chan BP. A structurally and functionally biomimetic biphasic scaffold for intervertebral disc tissue engineering[J]. PLoS One, 2015, 10(6):e0131827.
[34] Li YF, Tang XZ, Liang CG, et al. Role of growth differentiation factor-5 and bone morphogenetic protein type II receptor in the development of lumbar intervertebral disc degeneration[J]. Int J Clin Exp Pathol, 2015, 8(1):719-726.
[35] Shasti M, Jacquet R, Mcclellan P, et al. Effects of FGF-2 and OP-1 in vitro on donor source cartilage for auricular Reconstruction tissue engineering[J]. Int J Pediatr Otorhinolaryngol, 2014, 78(3):416-422.

备注/Memo

备注/Memo:
基金项目: 上海市浦江人才计划项目资助基金(16PJD040)、上海交通大学“医工交叉基金”项目(YG2016MS19)
通信作者: 赵庆华 E-mail: sawboneszhao@163.com
更新日期/Last Update: 2017-09-20