索引超出了数组界限。
[1] Fischer CR, Cassilly R, Cantor W, et al. A systematic review of comparative studies on bone graft alternatives for common spine fusion procedures[J]. Eur Spine J, 2013, 22(6):1423-1435.
[2] Ma D, Ren L, Chen F, et al. Reconstruction of rabbit critical-size calvarial defects using autologous bone marrow stromal cell sheets[J]. Ann Plast Surg, 2010, 65(2):259-265.
[3] Crowley C, Wong JM, Fisher DM, et al. A systematic review on preclinical and clinical studies on the use of scaffolds for bone repair in skeletal defects[J]. Curr Stem Cell Res Ther, 2013, 8(3):243-252.
[4] Henkel J, Woodruff MA, Epari DR, et al. Bone regeneration based on tissue engineering conceptions: a 21st century perspective[J]. Bone Res, 2013, 1(3):216-248.
[5] Kadam A, Millhouse PW, Kepler CK, et al. Bone substitutes and expanders in spine surgery: a review of their fusion efficacies[J]. Int J Spine Surq, 2016, 10:33.
[6] Dang M, Koh AJ, Jin X, et al. Local pulsatile pth delivery regenerates bone defects via enhanced bone remodeling in a cell-free scaffold[J]. Biomaterials, 2017, 114:1-9.
[7] Buser Z, Brodke DS, Youssef JA, et al. Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review[J]. J Neurosurg Spine, 2016, 25(4):509-516.
[8] Shamsul BS, Tan KK, Chen HC, et al. Posterolateral spinal fusion with ostegenesis induced BMSC seeded TCP/HA in a sheep model[J]. Tissue Cell, 2014, 46(2):152-158.
[9] Motomiya M, Ito M, Takahata M, et al. Effect of hydroxyapatite porous characteristics on healing outcomes in rabbit posterolateral spinal fusion model[J]. Eur Spine J, 2007, 16(12):2215-2224.
[10] Kunakornsawat S, Kirinpanu A, Piyaskulkaew C, et al. A comparative study of radiographic results using HEALOS collagen-hydroxyapatite sponge with bone marrow aspiration versus local bone graft in the same patients undergoing posterolateral lumbar fusion[J]. J Med Assoc Thai, 2013, 96(8):929-935.
[11] Bròdano GB, Giavaresi G, Lolli F, et al. Hydroxyapatite-based biomaterials vs. autologous bone graft in spinal fusion: an in vivo animal study[J]. Spine(Phila Pa 1976), 2014, [Epubahead of print].
[12] Bansal S, Chauhan V, Sharma S, et al. Evaluation of hydroxyapatite and beta-tricalcium phosphate mixed with bone marrow aspirate as a bone graft substitute for posterolateral spinal fusion[J]. Indian J Orthop, 2009, 43(3):234-239.
[13] Liu X, Rahaman MN, Hilmas GE, et al. Mechanical properties of bioactive glass(13-93)scaffolds fabricated by robotic deposition for structural bone repair[J]. Acta Biomater, 2013, 9(6):7025-7034.
[14] Hench LL, Jones JR. Bioactive glasses: frontiers and challenges[J]. Front Bioeng Biotechnol, 2015, 3:194.
[15] Baino F, Vitale-Brovarone C. Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future[J]. J Biomed Mater Res A, 2011, 97(4):514-535.
[16] Ilharreborde B, Morel E, Fitoussi F, et al. Bioactive glass as a bone substitute for spinal fusion in adolescent idiopathic scoliosis: a comparative study with iliac crest autograft[J]. J Pediatr Orthop, 2008, 28(3):347-351.
[17] Lee JH, Ryu HS, Seo JH, et al. Negative effect of rapidly resorbing properties of bioactive glass-ceramics as bone graft substitute in a rabbit lumbar fusion model[J]. Clin Orthop Surg, 2014, 6(1):87-95.
[18] Zhao S, Zhang J, Zhu M, et al. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects[J]. Acta Biomater, 2015, 12:270-280.
[19] Midha S, van den Bergh W, Kim TB, et al. Bioactive glass foam scaffolds are remodelled by osteoclasts and support the formation of mineralized matrix and vascular networks in vitro[J]. Adv Healthc Mater, 2013, 2(3):490-499.
[20] Tang W, Lin D, Yu Y, et al. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect[J]. Acta Biomater, 2016, 32:309-323.
[21] Pang X, Zhuang X, Tang Z, et al. Polylactic acid(PLA): research, development and industrialization[J]. Biotechnol J, 2010, 5(11):1125-1136.
[22] Eiteman MA, Ramalingam S. Microbial production of lactic acid[J]. Biotechnol Lett, 2015, 37(5):955-972.
[23] Tayton E, Purcell M, Aarvold A, et al. A comparison of polymer and polymer-hydroxyapatite composite tissue engineered scaffolds for use in bone regeneration. An in vitro and in vivo study[J]. J Biomed Mater Res A, 2014, 102(8):2613-2624.
[24] Tanaka K, Takemoto M, Fujibayashi S, et al. A bioactive and bioresorbable porous cubic composite scaffold loaded with bone marrow aspirate: a potential alternative to autogenous bone grafting[J]. Spine(Phila Pa 1976), 2011, 36(6):441-447.
[25] Garg T, Singh O, Arora S, et al. Scaffold: a novel carrier for cell and drug delivery[J]. Crit Rev Ther Drug Carrier Syst, 2012, 29(1):1-63.
[26] Chattopadhyay S, Raines RT. Review collagen-based biomaterials for wound healing[J]. Biopolymers, 2014, 101(8):821-833.
[27] Shoulders MD, Raines RT. Collagen structure and stability[J]. Annu Rev Biochem, 2009, 78:929-958.
[28] Han X, Zhang W, Gu J, et al. Accelerated postero-lateral spinal fusion by collagen scaffolds modified with engineered collagen-binding human bone morphogenetic protein-2 in rats[J]. PLoS One, 2014, 9(5):e98480.
[29] Wang Y, Shang S, Li C. Aligned biomimetic scaffolds as a new tendency in tissue engineering[J]. Curr Stem Cell Res Ther, 2016, 11(1):3-18.
[30] Newcomb CJ, Bitton R, Velichko YS, et al. The role of nanoscale architecture in supramolecular templating of biomimetic hydroxyapatite mineralization[J]. Small, 2012, 8(14):2195-2202, 2194.
[31] Long T, Yang J, Shi SS, et al. Fabrication of three-dimensional porous scaffold based on collagen fiber and bioglass for bone tissue engineering[J]. J Biomed Mater Res B Appl Biomater, 2015, 103(7):1455-1464.
[32] Hu T, Abbah SA, Toh SY, et al. Bone marrow-derived mesenchymal stem cells assembled with low-dose BMP-2 in a three-dimensional hybrid construct enhances posterolateral spinal fusion in syngeneic rats[J]. Spine J, 2015, 15(12):2552-2563.
[33] Tang ZB, Cao JK, Wen N, et al. Posterolateral spinal fusion with nano-hydroxyapatite-collagen/PLA composite and autologous adipose-derived mesenchymal stem cells in a rabbit model[J]. J Tissue Eng Regen Med, 2012, 6(4):325-336.
[34] Ren X, Tu V, Bischoff D, et al. Nanoparticulate mineralized collagen scaffolds induce in vivo bone regeneration independent of progenitor cell loading or exogenous growth factor stimulation[J]. Biomaterials, 2016, 89:67-78.