索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]梁博,徐建广.骨组织工程支架材料用于脊柱后外侧融合术研究进展[J].国际骨科学杂志,2017,05:294-298.
点击复制

骨组织工程支架材料用于脊柱后外侧融合术研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2017年05期
页码:
294-298
栏目:
综述
出版日期:
2017-09-20

文章信息/Info

Title:
-
作者:
梁博徐建广
200233, 上海交通大学附属第六人民医院骨科
Author(s):
-
关键词:
骨组织工程 骨替代物 支架材料 脊柱融合
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2017.05.005
文献标识码:
A
摘要:
自体骨移植是脊柱融合术的金标准,然而将自体骨作为移植物存在不少缺陷及并发症,所以骨组织工程支架材料逐渐成为研究热点。早期研究主要集中于钙磷陶瓷和生物活性玻璃等无机材料、聚乳酸等人工合成高分子材料及胶原等生物材料,这些材料均有一定的成骨及融合效果。研究发现,使用特定工艺将有机材料与无机材料结合制成的复合材料各方面属性均更接近正常骨组织,配合基质干细胞和各类生长因子,能达到或超过自体骨移植所获得的融合效果。该文就近年来骨组织工程支架材料用于脊柱后外侧融合术研究进展作一综述。
Abstract:
-

参考文献/References

[1] Fischer CR, Cassilly R, Cantor W, et al. A systematic review of comparative studies on bone graft alternatives for common spine fusion procedures[J]. Eur Spine J, 2013, 22(6):1423-1435.
[2] Ma D, Ren L, Chen F, et al. Reconstruction of rabbit critical-size calvarial defects using autologous bone marrow stromal cell sheets[J]. Ann Plast Surg, 2010, 65(2):259-265.
[3] Crowley C, Wong JM, Fisher DM, et al. A systematic review on preclinical and clinical studies on the use of scaffolds for bone repair in skeletal defects[J]. Curr Stem Cell Res Ther, 2013, 8(3):243-252.
[4] Henkel J, Woodruff MA, Epari DR, et al. Bone regeneration based on tissue engineering conceptions: a 21st century perspective[J]. Bone Res, 2013, 1(3):216-248.
[5] Kadam A, Millhouse PW, Kepler CK, et al. Bone substitutes and expanders in spine surgery: a review of their fusion efficacies[J]. Int J Spine Surq, 2016, 10:33.
[6] Dang M, Koh AJ, Jin X, et al. Local pulsatile pth delivery regenerates bone defects via enhanced bone remodeling in a cell-free scaffold[J]. Biomaterials, 2017, 114:1-9.
[7] Buser Z, Brodke DS, Youssef JA, et al. Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review[J]. J Neurosurg Spine, 2016, 25(4):509-516.
[8] Shamsul BS, Tan KK, Chen HC, et al. Posterolateral spinal fusion with ostegenesis induced BMSC seeded TCP/HA in a sheep model[J]. Tissue Cell, 2014, 46(2):152-158.
[9] Motomiya M, Ito M, Takahata M, et al. Effect of hydroxyapatite porous characteristics on healing outcomes in rabbit posterolateral spinal fusion model[J]. Eur Spine J, 2007, 16(12):2215-2224.
[10] Kunakornsawat S, Kirinpanu A, Piyaskulkaew C, et al. A comparative study of radiographic results using HEALOS collagen-hydroxyapatite sponge with bone marrow aspiration versus local bone graft in the same patients undergoing posterolateral lumbar fusion[J]. J Med Assoc Thai, 2013, 96(8):929-935.
[11] Bròdano GB, Giavaresi G, Lolli F, et al. Hydroxyapatite-based biomaterials vs. autologous bone graft in spinal fusion: an in vivo animal study[J]. Spine(Phila Pa 1976), 2014, [Epubahead of print].
[12] Bansal S, Chauhan V, Sharma S, et al. Evaluation of hydroxyapatite and beta-tricalcium phosphate mixed with bone marrow aspirate as a bone graft substitute for posterolateral spinal fusion[J]. Indian J Orthop, 2009, 43(3):234-239.
[13] Liu X, Rahaman MN, Hilmas GE, et al. Mechanical properties of bioactive glass(13-93)scaffolds fabricated by robotic deposition for structural bone repair[J]. Acta Biomater, 2013, 9(6):7025-7034.
[14] Hench LL, Jones JR. Bioactive glasses: frontiers and challenges[J]. Front Bioeng Biotechnol, 2015, 3:194.
[15] Baino F, Vitale-Brovarone C. Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future[J]. J Biomed Mater Res A, 2011, 97(4):514-535.
[16] Ilharreborde B, Morel E, Fitoussi F, et al. Bioactive glass as a bone substitute for spinal fusion in adolescent idiopathic scoliosis: a comparative study with iliac crest autograft[J]. J Pediatr Orthop, 2008, 28(3):347-351.
[17] Lee JH, Ryu HS, Seo JH, et al. Negative effect of rapidly resorbing properties of bioactive glass-ceramics as bone graft substitute in a rabbit lumbar fusion model[J]. Clin Orthop Surg, 2014, 6(1):87-95.
[18] Zhao S, Zhang J, Zhu M, et al. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects[J]. Acta Biomater, 2015, 12:270-280.
[19] Midha S, van den Bergh W, Kim TB, et al. Bioactive glass foam scaffolds are remodelled by osteoclasts and support the formation of mineralized matrix and vascular networks in vitro[J]. Adv Healthc Mater, 2013, 2(3):490-499.
[20] Tang W, Lin D, Yu Y, et al. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect[J]. Acta Biomater, 2016, 32:309-323.
[21] Pang X, Zhuang X, Tang Z, et al. Polylactic acid(PLA): research, development and industrialization[J]. Biotechnol J, 2010, 5(11):1125-1136.
[22] Eiteman MA, Ramalingam S. Microbial production of lactic acid[J]. Biotechnol Lett, 2015, 37(5):955-972.
[23] Tayton E, Purcell M, Aarvold A, et al. A comparison of polymer and polymer-hydroxyapatite composite tissue engineered scaffolds for use in bone regeneration. An in vitro and in vivo study[J]. J Biomed Mater Res A, 2014, 102(8):2613-2624.
[24] Tanaka K, Takemoto M, Fujibayashi S, et al. A bioactive and bioresorbable porous cubic composite scaffold loaded with bone marrow aspirate: a potential alternative to autogenous bone grafting[J]. Spine(Phila Pa 1976), 2011, 36(6):441-447.
[25] Garg T, Singh O, Arora S, et al. Scaffold: a novel carrier for cell and drug delivery[J]. Crit Rev Ther Drug Carrier Syst, 2012, 29(1):1-63.
[26] Chattopadhyay S, Raines RT. Review collagen-based biomaterials for wound healing[J]. Biopolymers, 2014, 101(8):821-833.
[27] Shoulders MD, Raines RT. Collagen structure and stability[J]. Annu Rev Biochem, 2009, 78:929-958.
[28] Han X, Zhang W, Gu J, et al. Accelerated postero-lateral spinal fusion by collagen scaffolds modified with engineered collagen-binding human bone morphogenetic protein-2 in rats[J]. PLoS One, 2014, 9(5):e98480.
[29] Wang Y, Shang S, Li C. Aligned biomimetic scaffolds as a new tendency in tissue engineering[J]. Curr Stem Cell Res Ther, 2016, 11(1):3-18.
[30] Newcomb CJ, Bitton R, Velichko YS, et al. The role of nanoscale architecture in supramolecular templating of biomimetic hydroxyapatite mineralization[J]. Small, 2012, 8(14):2195-2202, 2194.
[31] Long T, Yang J, Shi SS, et al. Fabrication of three-dimensional porous scaffold based on collagen fiber and bioglass for bone tissue engineering[J]. J Biomed Mater Res B Appl Biomater, 2015, 103(7):1455-1464.
[32] Hu T, Abbah SA, Toh SY, et al. Bone marrow-derived mesenchymal stem cells assembled with low-dose BMP-2 in a three-dimensional hybrid construct enhances posterolateral spinal fusion in syngeneic rats[J]. Spine J, 2015, 15(12):2552-2563.
[33] Tang ZB, Cao JK, Wen N, et al. Posterolateral spinal fusion with nano-hydroxyapatite-collagen/PLA composite and autologous adipose-derived mesenchymal stem cells in a rabbit model[J]. J Tissue Eng Regen Med, 2012, 6(4):325-336.
[34] Ren X, Tu V, Bischoff D, et al. Nanoparticulate mineralized collagen scaffolds induce in vivo bone regeneration independent of progenitor cell loading or exogenous growth factor stimulation[J]. Biomaterials, 2016, 89:67-78.

备注/Memo

备注/Memo:
通信作者: 徐建广 E-mail: jianguangxu2004@aliyun.com
更新日期/Last Update: 2017-09-20