索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]张笑天,柴益民.微小RNA介导慢性创面愈合机制研究进展[J].国际骨科学杂志,2016,06:393-400.
点击复制

微小RNA介导慢性创面愈合机制研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2016年06期
页码:
393-400
栏目:
综述
出版日期:
2016-11-25

文章信息/Info

Title:
-
作者:
张笑天柴益民
200233, 上海交通大学附属第六人民医院骨科
Author(s):
-
关键词:
微小RNA 慢性创面 炎症反应 低氧诱导因子 dicer酶 血管新生
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2016.06.012
文献标识码:
-
摘要:
微小RNA(miRNA)广泛存在于人体各组织器官中,调控细胞新陈代谢全过程。目前认为miRNA调节异常可能参与了难愈伤口的形成,但其确切发病机制和相关分子生物学改变仍存有争议。研究表明,miRNA以各种方式在创面炎症反应阶段、细胞增殖阶段和组织重建阶段调控炎症。各种体外、体内实验研究的关注点也集中在miRNA介导慢性创面愈合作用机制上。该文就miRNA介导慢性创面愈合机制作一综述。
Abstract:
-

参考文献/References

[1] Moreno-Moya JM, Vilella F, Simon C. MicroRNA: key gene expression regulators[J]. Fertil Steril, 2014, 101(6):1516-1523.
[2] Fahs F, Bi X, Yu FS, et al. New insights into microRNAs in skin wound healing[J]. IUBMB Life, 2015, 67(12):889-896.
[3] Ardekani AM, Naeini MM. The role of micrornas in human diseases[J]. Avicenna J Med Biotechnol, 2010, 2(4):161-179.
[4] Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes[J]. Cell, 2006, 126(6):1203-1217.
[5] Ha M, Kim VN. Regulation of microRNA biogenesis[J]. Nat Rev Mol Cell Biol, 2014, 15(8):509-524.
[6] Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2):215-233.
[7] Tay Y, Zhang J, Thomson AM, et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation[J]. Nature, 2008, 455(7216):1124-1128.
[8] Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5’UTR of ribosomal protein mRNAs and enhances their translation[J]. Mol Cell, 2008, 30(4):460-471.
[9] Li D, Wang A, Liu X, et al. MicroRNA-132 enhances transition from inflammation to proliferation during wound healing[J]. J Clin Invest, 2015, 125(8):3008-3026.
[10] Martinez-Nunez RT, Louafi F, Friedmann PS, et al. MicroRNA-155 modulates the pathogen binding ability of dendritic cells(DCs)by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin(DC-SIGN)[J]. J Biol Chem, 2009, 284(24):16334-16342.
[11] Yang LL, Liu JQ, Bai XZ, et al. Acute downregulation of miR-155 at wound sites leads to a reduced fibrosis through attenuating inflammatory response[J]. Biochem Biophys Res Commun, 2014, 453(1):153-159.
[12] Tili E, Croce CM, Michaille JJ. miR-155: on the crosstalk between inflammation and cancer[J]. Int Rev Immunol, 2009, 28(5):264-284.
[13] Tili E, Michaille JJ, Cimino A, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock[J]. J Immunol, 2007, 179(8):5082-5089.
[14] O’Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses[J]. Annu Rev Immunol, 2012, 30:295-312.
[15] O’Connell RM, Chaudhuri AA, Rao DS, et al. Inositol phosphatase SHIP1 is a primary target of miR-155[J]. Proc Natl Acad Sci USA, 2009, 106(17):7113-7118.
[16] Rebane A, Runnel T, Aab A, et al. MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes[J]. J Allergy Clin Immunol, 2014, 134(4):836-847.
[17] Suarez Y, Wang C, Manes TD, et al. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation[J]. J Immunol, 2010, 184(1):21-25.
[18] Lu LF, Thai TH, Calado DP, et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein[J]. Immunity, 2009, 30(1):80-91.
[19] Park H, Huang X, Lu C, et al. MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins[J]. J Biol Chem, 2015, 290(5):2831-2841.
[20] Sheedy FJ, Palsson-McDermott E, Hennessy EJ, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21[J]. Nat Immunol, 2010, 11(2):141-147.
[21] Recchiuti A, Krishnamoorthy S, Fredman G, et al. MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits[J]. FASEB J, 2011, 25(2):544-560.
[22] Das A, Ganesh K, Khanna S, et al. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation[J]. J Immunol, 2014, 192(3):1120-1129.
[23] Yang X, Wang J, Guo SL, et al. miR-21 promotes keratinocyte migration and re-epithelialization during wound healing[J]. Int J Biol Sci, 2011, 7(5):685-690.
[24] Xu J, Wu W, Zhang L, et al. The role of microRNA-146a in the pathogenesis of the diabetic wound-healing impairment: correction with mesenchymal stem cell treatment[J]. Diabetes, 2012, 61(11):2906-2912.
[25] Li D, Li X, Wang A, et al. MicroRNA-31 promotes skin wound healing by enhancing keratinocyte proliferation and migration[J]. J Invest Dermatol, 2015, 135(6):1676-1685.
[26] Roy S, Khanna S, Rink C, et al. Characterization of the acute temporal changes in excisional murine cutaneous wound inflammation by screening of the wound-edge transcriptome[J]. Physiol Genomics, 2008, 34(2):162-184.
[27] Nakamachi Y, Kawano S, Takenokuchi M, et al. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis[J]. Arthritis Rheum, 2009, 60(5):1294-1304.
[28] Pottier N, Maurin T, Chevalier B, et al. Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts: implication in epithelial-mesenchymal interactions[J]. PLoS One, 2009, 4(8):e6718.
[29] Yu J, Peng H, Ruan Q, et al. MicroRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2[J]. FASEB J, 2010, 24(10):3950-3959.
[30] Sundaram GM, Common JE, Gopal FE, et al. ‘See-saw’expression of microRNA-198 and FSTL1 from a single transcript in wound healing[J]. Nature, 2013, 495(7439):103-106.
[31] Viticchie G, Lena AM, Cianfarani F, et al. MicroRNA-203 contributes to skin re-epithelialization[J]. Cell Death Dis, 2012, 3(11):e435.
[32] Bertero T, Gastaldi C, Bourget-Ponzio I, et al. miR-483-3p controls proliferation in wounded epithelial cells[J]. FASEB J, 2011, 25(9):3092-3105.
[33] Fasanaro P, D’Alessandra Y, Di Stefano V, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3[J]. J Biol Chem, 2008, 283(23):15878-15883.
[34] Sen CK, Roy S. OxymiRs in cutaneous development, wound repair and regeneration[J]. Semin Cell Dev Biol, 2012, 23(9):971-980.
[35] Loscalzo J. The cellular response to hypoxia: tuning the system with microRNAs[J]. J Clin Invest, 2010, 120(11):3815-3817.
[36] Brancato SK, Albina JE. Wound macrophages as key regulators of repair: origin, phenotype, and function[J]. Am J Pathol, 2011, 178(1):19-25.
[37] Kulshreshtha R, Ferracin M, Wojcik SE, et al. A microRNA signature of hypoxia[J]. Mol Cell Biol, 2007, 27(5):1859-1867.
[38] Pin AL, Houle F, Guillonneau M, et al. miR-20a represses endothelial cell migration by targeting MKK3 and inhibiting p38 MAP kinase activation in response to VEGF[J]. Angiogenesis, 2012, 15(4):593-608.
[39] Caporali A, Meloni M, Vollenkle C, et al. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia[J]. Circulation, 2011, 123(3):282-291.
[40] Doebele C, Bonauer A, Fischer A, et al. Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells[J]. Blood, 2010, 115(23):4944-4950.
[41] Wang B, Herman-Edelstein M, Koh P, et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta[J]. Diabetes, 2010, 59(7):1794-1802.
[42] Bonauer A, Carmona G, Iwasaki M, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice[J]. Science, 2009, 324(5935):1710-1713.
[43] Lei Z, Li B, Yang Z, et al. Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration[J]. PLoS One, 2009, 4(10):e7629.
[44] Suarez Y, Fernandez-Hernando C, Yu J, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis[J]. Proc Natl Acad Sci USA, 2008, 105(37):14082-14087.
[45] Harris TA, Yamakuchi M, Ferlito M, et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1[J]. Proc Natl Acad Sci USA, 2008, 105(5):1516-1521.
[46] Wurdinger T, Tannous BA, Saydam O, et al. miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells[J]. Cancer Cell, 2008, 14(5):382-393.
[47] Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis[J]. Dev Cell, 2008, 15(2):261-271.
[48] Chen Y, Gorski DH. Regulation of angiogenesis through a microRNA(miR-130a)that down-regulates antiangiogenic homeobox genes GAX and HOXA5[J]. Blood, 2008, 111(3):1217-1226.
[49] Kuehbacher A, Urbich C, Dimmeler S. Targeting microRNA expression to regulate angiogenesis[J]. Trends Pharmacol Sci, 2008, 29(1):12-15.
[50] Suarez Y, Fernandez-Hernando C, Pober JS, et al. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells[J]. Circ Res, 2007, 100(8):1164-1173.
[51] Hua Z, Lv Q, Ye W, et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia[J]. PLoS One, 2006, 1(1):e116.
[52] Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation[J]. Proc Natl Acad Sci USA, 2005, 102(50):18081-18086.
[53] Xu J, Zgheib C, Hu J, et al. The role of microRNA-15b in the impaired angiogenesis in diabetic wounds[J]. Wound Repair Regen, 2014, 22(5):671-677.
[54] Li H, Chang L, Du WW, et al. Anti-microRNA-378a enhances wound healing process by upregulating integrin beta-3 and vimentin[J]. Mol Ther, 2014, 22(10):1839-1850.
[55] Hunt TK, Aslam RS, Beckert S, et al. Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms[J]. Antioxid Redox Signal, 2007, 9(8):1115-1124.
[56] Cascio S, D’Andrea A, Ferla R, et al. miR-20b modulates VEGF expression by targeting HIF-1 alpha and STAT3 in MCF-7 breast cancer cells[J]. J Cell Physiol, 2010, 224(1):242-249.
[57] Rane S, He M, Sayed D, et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes[J]. Circ Res, 2009, 104(7):879-886.
[58] Ghatak S, Chan YC, Khanna S, et al. Barrier function of the repaired skin is disrupted following arrest of dicer in keratinocytes[J]. Mol Ther, 2015, 23(7):1201-1210.
[59] Caporali A, Emanueli C. MicroRNA regulation in angiogenesis[J]. Vascul Pharmacol, 2011, 55(4):79-86.
[60] Schober A, Nazari-Jahantigh M, Wei Y, et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1[J]. Nat Med, 2014, 20(4):368-376.
[61] Shilo S, Roy S, Khanna S, et al. Evidence for the involvement of miRNA in redox regulated angiogenic response of human microvascular endothelial cells[J]. Arterioscler Thromb Vasc Biol, 2008, 28(3):471-477.
[62] Wu C, So J, Davis-Dusenbery BN, et al. Hypoxia potentiates microRNA-mediated gene silencing through posttranslational modification of Argonaute2[J]. Mol Cell Biol, 2011, 31(23):4760-4774.
[63] Sinha M, Ghatak S, Roy S, et al. microRNA-200b as a switch for inducible adult angiogenesis[J]. Antioxid Redox Signal, 2015, 22(14):1257-1272.
[64] Suarez Y, Fernandez-Hernando C, Yu J, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis[J]. Proc Natl Acad Sci USA, 2008, 105(37):14082-14087.
[65] Anand S, Majeti BK, Acevedo LM, et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis[J]. Nat Med, 2010, 16(8):909-914.
[66] Poliseno L, Tuccoli A, Mariani L, et al. MicroRNAs modulate the angiogenic properties of HUVECs[J]. Blood, 2006, 108(9):3068-3071.
[67] Litz J, Krystal GW. Imatinib inhibits c-Kit-induced hypoxia-inducible factor-1alpha activity and vascular endothelial growth factor expression in small cell lung cancer cells[J]. Mol Cancer Ther, 2006, 5(6):1415-1422.
[68] Wang J, Gui Z, Deng L, et al. c-Met upregulates aquaporin 3 expression in human gastric carcinoma cells via the ERK signalling pathway[J]. Cancer Lett, 2012, 319(1):109-117.
[69] Elia L, Contu R, Quintavalle M, et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions[J]. Circulation, 2009, 120(23):2377-2385.
[70] Ciechomska M, O’Reilly S, Suwara M, et al. MiR-29a reduces TIMP-1 production by dermal fibroblasts via targeting TGF-β activated kinase 1 binding protein 1, implications for systemic sclerosis[J]. PLoS One, 2014, 9(12):e115596.
[71] Pastar I, Khan AA, Stojadinovic O, et al. Induction of specific microRNAs inhibits cutaneous wound healing[J]. J Biol Chem, 2012, 287(35):29324-29335.
[72] Jin Y, Tymen SD, Chen D, et al. MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing[J]. PLoS One, 2013, 8(5):e64434.
[73] Wang JM, Tao J, Chen DD, et al. MicroRNA miR-27b rescues bone marrow-derived angiogenic cell function and accelerates wound healing in type 2 diabetes mellitus[J]. Arterioscler Thromb Vasc Biol, 2014, 34(1):99-109.
[74] Xu J, Wu W, Zhang L, et al. The role of microRNA-146a in the pathogenesis of the diabetic wound-healing impairment: correction with mesenchymal stem cell treatment[J]. Diabetes, 2012, 61(11):2906-2912.
[75] van Solingen C, Araldi E, Chamorro-Jorganes A, et al. Improved repair of dermal wounds in mice lacking microRNA-155[J]. J Cell Mol Med, 2014, 18(6):1104-1112.
[76] Tang H, Jin X, Li Y, et al. A large-scale screen for coding variants predisposing to psoriasis[J]. Nat Genet, 2014, 46(1):45-50.
[77] Ben-Shushan D, Markovsky E, Gibori H, et al. Overcoming obstacles in microRNA delivery towards improved cancer therapy[J]. Drug Deliv Transl Res, 2014, 4(1):38-49.
[78] Fasanaro P, Greco S, Ivan M, et al. microRNA: emerging therapeutic targets in acute ischemic diseases[J]. Pharmacol Ther, 2010, 125(1):92-104.

备注/Memo

备注/Memo:
作者单位: 200233, 上海交通大学附属第六人民医院骨科通信作者: 柴益民 E-mail: ymchai@sjtu.edu.cn
更新日期/Last Update: 2016-11-20