索引超出了数组界限。
[1] Morrow JJ, Khanna C. Osteosarcoma genetics and epigenetics: emerging biology and candidate therapies[J]. Crit Rev Oncog, 2015, 20(3-4):173-197.
[2] Luetke A, Meyers PA2, Lewis I, et al. Osteosarcoma treatment - where do we stand? A state of the art review[J]. Cancer Treat Rev, 2014, 40(4):523-532.
[3] Alfranca A, Martinez-Cruzado L, Tornin J, et al. Bone microenvironment signals in osteosarcoma development[J]. Cell Mol Life Sci, 2015, 72(16):3097-3113.
[4] Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis[J]. Nat Med, 2013, 19(11):1423-1437.
[5] Atanasov G, Hau HM, Dietel C, et al. Prognostic significance of macrophage invasion in hilar cholangiocarcinoma[J]. BMC Cancer, 2015, 15:790.
[6] Xuan W, Qu Q, Zheng B, et al. The chemotaxis of M1 and M2 macrophages is regulated by different chemokines[J]. J Leukoc Biol, 2015, 97(1):61-69.
[7] Zhang J, Zhou Q, Yuan G, et al. Notch signaling regulates M2 type macrophage polarization during the development of proliferative vitreoretinopathy[J]. Cell Immunol, 2015, 298(1-2):77-82.
[8] Biswas SK, Lewis CE. NF-κB as a central regulator of macrophage function in tumors[J]. J Leukoc Biol, 2010, 88(5):877-884.
[9] Shirabe K, Mano Y, Muto J, et al. Role of tumor-associated macrophages in the progression of hepatocellular carcinoma[J]. Surg Today, 2012, 42(1):1-7.
[10] Kurahara H, Shinchi H, Mataki Y, et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer[J]. J Surg Res, 2011, 167(2):e211-e219.
[11] Wu H, Xu JB, He YL, et al. Tumor-associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer[J]. J Surg Oncol, 2012, 106(4):462-468.
[12] Yang P, Yin K, Zhong D, et al. Inhibition of osteosarcoma cell progression by MacroH2A via the downregulation of cyclin D and cyclin-dependent kinase genes[J]. Mol Med Rep, 2015, 11(3):1905-1910.
[13] Ma Y, Zhu B, Liu X, et al. Inhibition of oleandrin on the proliferation show and invasion of osteosarcoma cells in vitro by suppressing Wnt/β-catenin signaling pathway[J]. J Exp Clin Cancer Res, 2015, 34:115.
[14] Li WH, Wu HJ, Li YX, et al. MicroRNA-143 promotes apoptosis of osteosarcoma cells by caspase-3 activation via targeting Bcl-2[J]. Biomed Pharmacother, 2016, 80:8-15.
[15] Klambt C. EGF receptor signalling: the importance of presentation[J]. Curr Biol, 2000, 10(10):R388-R391.
[16] Hu HL, Bai HS, Pan HX. Correlation between TAMs and proliferation and invasion of type I endometrial carcinoma[J]. Asian Pac J Trop Med, 2015, 8(8):643-650.
[17] Yang C, He L, He P, et al. Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway[J]. Med Oncol, 2015, 32(2):352.
[18] Xiao Q, Zhang X, Wu Y, et al. Inhibition of macrophage polarization prohibits growth of human osteosarcoma[J]. Tumour Biol, 2014, 35(8):7611-7616.
[19] Pahl JH, Kwappenberg KM, Varypataki EM, et al. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ[J]. J Exp Clin Cancer Res, 2014, 33:27.
[20] Belair DG, Miller MJ, Wang S, et al. Differential regulation of angiogenesis using degradable VEGF-binding microspheres[J]. Biomaterials, 2016, 93:27-37.
[21] Deryugina EI, Quigley JP. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature[J]. Matrix Biol, 2015, 44-46:94-112.
[22] Peng N, Gao S, Guo X, et al. Silencing of VEGF inhibits human osteosarcoma angiogenesis and promotes cell apoptosis via VEGF/PI3K/AKT signaling pathway[J]. Am J Transl Res, 2016, 8(2):1005-1015.
[23] Yang X, Zhou W, Liu S. SPAG9 controls the cell motility, invasion and angiogenesis of human osteosarcoma cells[J]. Exp Ther Med, 2016, 11(2):637-644.
[24] Hu F, Shang XF, Wang W, et al. High-level expression of periostin is significantly correlated with tumour angiogenesis and poor prognosis in osteosarcoma[J]. Int J Exp Pathol, 2016, 97(1):86-92.
[25] Tzeng HE, Tsai CH, Chang ZL, et al. Interleukin-6 induces vascular endothelial growth factor expression and promotes angiogenesis through apoptosis signal-regulating kinase 1 in human osteosarcoma[J]. Biochem Pharmacol, 2013, 85(4):531-540.
[26] Ren HY, Zhang YH, Li HY, et al. Prognostic role of hypoxia-inducible factor-1 alpha expression in osteosarcoma: a meta-analysis[J]. Onco Targets Ther, 2016, 9:1477-1487.
[27] Ribatti D, Nico B, Crivellato E, et al. Macrophages and tumor angiogenesis[J]. Leukemia, 2007, 21(10):2085-2089.
[28] Peterson TE, Kirkpatrick ND, Huang Y, et al. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages[J]. Proc Natl Acad Sci USA, 2016, 113(16):4470-4475.
[29] Surendra P, Yulius H, Angelina S, et al. The correlation between TAM, MVD, VEGF and MMP-9 expressions among various histological progression, histological grading and staging of breast cancer[J]. J Med Sci, 2012, 44(1):41-48.
[30] Wu H, Xu JB, He YL, et al. Tumor-associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer[J]. J Surg Oncol, 2012, 106(4):462-468.
[31] Werno C, Menrad H, Weigert A, et al. Knockout of HIF-1α in tumor-associated macrophages enhances M2 polarization and attenuates their pro-angiogenic responses[J]. Carcinogenesis, 2010, 31(10):1863-1872.
[32] Segaliny AI, Mohamadi A, Dizier B, et al. Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment[J]. Int J Cancer, 2015, 137(1):73-85.
[33] Ongaro A, Pellati A, Bagheri L, et al. Characterization of notch signaling during osteogenic differentiation in human osteosarcoma cell line MG63[J]. J Cell Physiol, 2016, 231(12):2652-2663.
[34] Zhao S, Kurenbekova L, Gao Y, et al. NKD2, a negative regulator of Wnt signaling, suppresses tumor growth and metastasis in osteosarcoma[J]. Oncogene, 2015, 34(39):5069-5079.
[35] Ohba T, Cates JM, Cole HA, et al. Autocrine VEGF/VEGFR1 signaling in a subpopulation of cells associates with aggressive osteosarcoma[J]. Mol Cancer Res, 2014, 12(8):1100-1111.
[36] Ren L, Khanna C. Role of ezrin in osteosarcoma metastasis[J]. Adv Exp Med Biol, 2014, 804:181-201.
[37] Rao-Bindal K, Zhou Z, Kleinerman E. MS-275 sensitizes osteosarcoma cells to fas ligand-induced cell death by increasing the localization of fas in membrane lipid rafts[J]. Cell Death Dis, 2012, 3(8):e369.
[38] Cheng G, Gao F, Sun X, et al. Paris saponin Ⅶ suppresses osteosarcoma cell migration and invasion by inhibiting MMP?2/9 production via the p38 MAPK signaling pathway[J]. Mol Med Rep, 2016, 14(4):3199-3205.
[39] Gao F, Liang B, Reddy ST, et al. Role of inflammation-associated microenvironment in tumorigenesis and metastasis[J]. Curr Cancer Drug Targets, 2014, 14(1):30-45.
[40] Zhang F, Wang H, Wang X, et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype[J]. Oncotarget, 2016, [Epub ahead of print].
[41] Liu CY, Xu JY, Shi XY, et al. M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway[J]. Lab Invest, 2013, 93(7):844-854.
[42] Lee CH, Liu SY, Chou KC, et al. Tumor-associated macrophages promote oral cancer progression through activation of the Axl signaling pathway[J]. Ann Surg Oncol, 2014, 21(3):1031-1037.
[43] Lin X, Chen L, Yao Y, et al. CCL18-mediated down-regulation of miR98 and miR27b promotes breast cancer metastasis[J]. Oncotarget, 2015, 6(24):20485-20499.
[44] Buddingh EP, Kuijjer ML, Duim RA, et al. Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents[J]. Clin Cancer Res, 2011, 17(8):2110-2119.
[45] Tirino V, Desiderio V, Paino F, et al. Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization[J]. FASEB J, 2013, 27(1):13-24.
[46] Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature, 1994, 367(6464):645-648.
[47] Gibbs CP, Kukekov VG, Reith JD, et al. Stem-like cells in bone sarcomas: implications for tumorigenesis[J]. Neoplasia, 2005, 7(11):967-976.
[48] Basu-Roy U, Basilico C, Mansukhani A. Perspectives on cancer stem cells in osteosarcoma[J]. Cancer Lett, 2013, 338(1):158-167.
[49] Zhang H, Wu H, Zheng J, et al. Transforming growth factor β1 signal is crucial for dedifferentiation of cancer cells to cancer stem cells inosteosar-coma[J]. Stem Cells, 2013, 31(3):433-446.
[50] Yan GN, Lv YF, Guo QN. Advances in osteosarcoma stem cell research and opportunities for novel therapeutic targets[J]. Cancer Lett, 2016, 370(2):268-274.
[51] Basu-Roy U, Seo E, Ramanathapuram L, et al. Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas[J]. Oncogene, 2012, 31(18):2270-2282.
[52] Wan S, Zhao E, Kryczek I, et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells[J]. Gastroenterology, 2014, 147(6):1393-1404.
[53] Fan QM, Jing YY, Yu GF, et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Cancer Lett, 2014, 352(2):160-168.
[54] Yang J, Liao D, Chen C, et al. Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway[J]. Stem Cells, 2013, 31(2):248-258.
[55] Palsson-McDermott EM, Curtis AM, Goel G, et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages[J]. Cell Metab, 2015, 21(1):65-80.
[56] Liu ZX, Hong L, Fang SQ, et al. Overexpression of pyruvate kinase M2 predicts a poor prognosis for patients with osteosarcoma[J]. Tumour Biol, 2016, [Epub ahead of print].
[57] O’Keeffe M, Mok WH, Radford KJ. Human dendritic cell subsets and function in health and disease[J]. Cell Mol Life Sci, 2015, 72(22):4309-4325.