索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]沙一帆,邓国英,王秋根,等.瞬时受体电位通道M8在冷刺激致骨关节炎中的作用[J].国际骨科学杂志,2016,06:383-387.
点击复制

瞬时受体电位通道M8在冷刺激致骨关节炎中的作用(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2016年06期
页码:
383-387
栏目:
综述
出版日期:
2016-11-25

文章信息/Info

Title:
-
作者:
沙一帆邓国英王秋根王谦
201620, 上海交通大学附属第一人民医院创伤骨科、上海市创伤急救中心
Author(s):
-
关键词:
冷刺激 瞬时受体电位通道M8 骨关节炎 炎性因子 疼痛
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2016.06.010
文献标识码:
-
摘要:
瞬时受体电位通道(TRP)M8是一种非选择性阳离子通道蛋白,广泛分布于各种细胞组织中。该通道能被22℃~27℃的冷刺激或冷却剂如薄荷醇激活,产生Ca2+内流为主的跨膜电压变化,参与冷感觉形成,并具有调控疼痛及细胞增殖、分化、凋亡的作用。该文就TRPM8在冷刺激致骨关节炎中的作用作一综述。
Abstract:
-

参考文献/References

[1] Jordt SE, McKemy DD, Julius D. Lessons from peppers and peppermint: the molecular logic of thermosensation[J]. Curr Opin Neurobiol, 2003,13(4):487-492.
[2] Tsavaler L, Shapero MH, Morkowski S, et al. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins[J]. Cancer Res, 2001,61(9):3760-3769.
[3] McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation[J]. Nature, 2002, 416(6876):52-58.
[4] Zhang L, Barritt GJ. Evidence that TRPM8 is an androgen-dependent Ca2+ channel required for the survival of prostate cancer cells[J]. Cancer Res, 2004, 64(22):8365-8373.
[5] Perez de Vega MJ, Gomez-Monterrey I, Ferrer-Montiel A, et al. Transient receptor potential melastatin 8 channel(TRPM8)modulation: cool entryway for treating pain and cancer[J]. J Med Chem, 2016, [Epub ahead of print].
[6] Zakharian E, Cao C, Rohacs T. Gating of transient receptor potential melastatin 8(TRPM8)channels activated by cold and chemical agonists in planar lipid bilayers[J]. J Neurosci, 2010, 30(37):12526-12534.
[7] Zhu S, Wang Y, Pan L, et al. Involvement of transient receptor potential melastatin-8(TRPM8)in menthol-induced calcium entry, reactive oxygen species production and cell death in rheumatoid arthritis rat synovial fibroblasts[J]. Eur J Pharmacol, 2014, 725:1-9.
[8] Almaraz L, Manenschijn JA, de la Pena E, et al. TRPM8[J]. Handb Exp Pharmacol, 2014, 222:547-579.
[9] Bidaux G, Beck B, Zholos A, et al. Regulation of activity of transient receptor potential melastatin 8(TRPM8)channel by its short isoforms[J]. J Biol Chem, 2012, 287(5):2948-2962.
[10] Johnson CD, Melanaphy D, Purse A, et al. Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone[J]. Am J Physiol Heart Circ Physiol, 2009, 296(6):H1868-H1877.
[11] Thebault S, Lemonnier L, Bidaux G, et al. Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8(TRPM8)in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells[J]. J Biol Chem, 2005, 280(47):39423-39435.
[12] Borowiec AS, Sion B, Chalmel F, et al. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation[J]. FASEB J, 2016, 30(9):3155-3170.
[13] Chen GL, Lei M, Zhou LP, et al. Borneol is a TRPM8 agonist that increases ocular surface wetness[J]. PLoS One, 2016, 11(7):e0158868.
[14] Abe J, Hosokawa H, Sawada Y, et al. Ca2+-dependent PKC activation mediates menthol-induced desensitization of transient receptor potential M8[J]. Neurosci Lett, 2006, 397(1-2):140-144.
[15] Vriens J, Nilius B, Voets T. Peripheral thermosensation in mammals[J]. Nat Rev Neurosci, 2014, 15(9):573-589.
[16] Carrasquel-Ursulaez W, Moldenhauer H, Castillo JP, et al. Biophysical analysis of thermosensitive TRP channels with a special focus on the cold receptor TRPM8[J]. Temperature(Austin), 2015, 2(2):188-200.
[17] McCoy DD, Knowlton WM, McKemy DD. Scraping through the ice: uncovering the role of TRPM8 in cold transduction[J]. Am J Physiol Regul Integr Comp Physiol, 2011, 300(6):R1278-R1287.
[18] Vetter I, Kym PR, Szallasi A. Feeling hot, feeling cold: TRP channels. A great story unfolds[J]. Temperature(Austin), 2015, 2(2):150-151.
[19] Andrews MD, Forselles K, Beaumont K, et al. Discovery of a selective TRPM8 antagonist with clinical efficacy in cold-related pain[J]. ACS Med Chem Lett, 2015, 6(4):419-424.
[20] Sabnis AS, Reilly CA, Veranth JM, et al. Increased transcription of cytokine genes in human lung epithelial cells through activation of a TRPM8 variant by cold temperatures[J]. Am J Physiol Lung Cell Mol Physiol, 2008, 295(1):L194-L200.
[21] Du S, Araki I, Kobayashi H, et al. Differential expression profile of cold(TRPA1)and cool(TRPM8)receptors in human urogenital organs[J]. Urology, 2008, 72(2):450-455.
[22] Julius D, Basbaum AI. Molecular mechanisms of nociception[J]. Nature, 2001, 413(6852):203-210.
[23] Tominaga M, Caterina MJ. Thermosensation and pain[J]. J Neurobiol, 2004, 61(1):3-12.
[24] Park S, Chun S, Kim D. Cold exposure lowers energy expenditure at the cellular level[J]. Cell Biol Int, 2013, 37(6):638-642.
[25] Proudfoot CJ, Garry EM, Cottrell DF, et al. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain[J]. Curr Biol, 2006, 16(16):1591-1605.
[26] Todaka H, Taniguchi J, Satoh J, et al. Warm temperature-sensitive transient receptor potential vanilloid 4(TRPV4)plays an essential role in thermal hyperalgesia[J]. J Biol Chem, 2004, 279(34):35133-35138.
[27] Colburn RW, Lubin ML, Stone DJ Jr, et al. Attenuated cold sensitivity in TRPM8 null mice[J]. Neuron, 2007, 54(3):379-386.
[28] Dai Y. TRPs and pain[J]. Semin Immunopathol, 2016, 38(3):277-291.
[29] Pogorzala LA, Mishra SK, Hoon MA. The cellular code for mammalian thermosensation[J]. J Neurosci, 2013, 33(13):5533-5541.
[30] DeFalco J, Duncton MA, Emerling D. TRPM8 biology and medicinal chemistry[J]. Curr Top Med Chem, 2011, 11(17):2237-2252.
[31] Brederson JD, Kym PR, Szallasi A. Targeting TRP channels for pain relief[J]. Eur J Pharmacol, 2013, 716(1-3):61-76.
[32] Laing RJ, Dhaka A. ThermoTRPs and pain[J]. Neuroscientist, 2016, 22(2):171-187.
[33] Dhaka A, Murray AN, Mathur J, et al. TRPM8 is required for cold sensation in mice[J]. Neuron, 2007, 54(3):371-378.
[34] 沈晓桦,崔屹. 膝骨关节炎的中西医治疗和护理研究进展[J]. 全科护理, 2015, 13(16):1497-1499.
[35] Ondresik M, Azevedo-Maia FR, da Silva-Morais A, et al. Management of knee osteoarthritis. Current status and future trends[J]. Biotechnol Bioeng, 2016, [Epub ahead of print].
[36] Raeissadat SA, Rayegani SM, Hassanabadi H, et al. Knee osteoarthritis injection choices: platelet- rich plasma(PRP)versus hyaluronic acid(a one-year randomized clinical trial)[J]. Clin Med Insights Arthritis Musculoskelet Disorder, 2015, 8:1-8.
[37] 喻斌,聂博渊,杨朝晖. 瞬时感受电位M8在人类膝关节软骨组织中的表达[J]. 中国组织工程研究, 2014, 18(20):3117-3121.
[38] 喻斌. 温度敏感性离子通道TRPM8在人类膝关节软骨组织中的表达[D]. 山西: 山西医科大学, 2014.
[39] 吴鹏,夏伊明,单新平,等. 昭苏高寒高海拔地区人群膝骨性关节炎情况调查[J]. 兵团医学, 2016, 47(1):44-47.
[40] 刘杰,王晓黎,郭俊生. 冷应激引发小鼠骨关节炎模型的建立[J]. 环境与职业医学, 2011, 28(5):289-292.
[41] Ainola M, Li TF, Mandelin J, et al. Involvement of a disintegrin and a metalloproteinase 8(ADAM8)in osteoclastogenesis and pathological bone destruction[J]. Ann Rheum Dis, 2009, 68(3):427-434.
[42] Dekker J, van Dijk GM, Veenhof C. Risk factors for functional decline in osteoarthritis of the hip or knee[J]. Curr Opin Rheumatol, 2009, 21(5):520-524.
[43] Masuko K, Murata M, Suematsu N, et al. A metabolic aspect of osteoarthritis: lipid as a possible contributor to the pathogenesis of cartilage degradation[J]. Clin Exp Rheumatol, 2009, 27(2):347-353.
[44] Takahashi D, Iwasaki N, Kon S, et al. Down-regulation of cathepsin K in synovium leads to progression of osteoarthritis in rabbits[J]. Arthritis Rheum, 2009, 60(8):2372-2380.

备注/Memo

备注/Memo:
基金项目: 上海市自然科学基金面上项目(13ZR1433300)、上海市科委引导项目(15411968800)作者单位: 201620, 上海交通大学附属第一人民医院创伤骨科、上海市创伤急救中心通信作者: 王谦 E-mail: drwangqian23@163.com
更新日期/Last Update: 2016-11-20